Alfred E Hartemink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170898/publications.pdf

Version: 2024-02-01

66336 74160 6,682 174 42 75 citations h-index g-index papers 195 195 195 6011 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Linking soils to ecosystem services â€" A global review. Geoderma, 2016, 262, 101-111.	5.1	734
2	Digital Soil Map of the World. Science, 2009, 325, 680-681.	12.6	469
3	GlobalSoilMap. Advances in Agronomy, 2014, , 93-134.	5. 2	246
4	Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark. PLoS ONE, 2014, 9, e105519.	2.5	245
5	Predicting soil properties in the tropics. Earth-Science Reviews, 2011, 106, 52-62.	9.1	198
6	A soil science renaissance. Geoderma, 2008, 148, 123-129.	5.1	167
7	Nutrient Stocks, Nutrient Cycling, and Soil Changes in Cocoa Ecosystems: A Review. Advances in Agronomy, 2005, 86, 227-253.	5. 2	144
8	Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 2016, 271, 202-215.	5.1	142
9	Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 2019, 647, 1230-1238.	8.0	138
10	Towards digital soil morphometrics. Geoderma, 2014, 230-231, 305-317.	5.1	134
11	Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional, 2021, 25, e00398.	2.1	133
12	Soil and environmental issues in sandy soils. Earth-Science Reviews, 2020, 208, 103295.	9.1	118
13	Soil Nitrate and Water Dynamics in Sesbania Fallows, Weed Fallows, and Maize. Soil Science Society of America Journal, 1996, 60, 568-574.	2.2	111
14	Early soil knowledge and the birth and development of soil science. Catena, 2010, 83, 23-33.	5.0	111
15	Digital Mapping of Soil Particle‧ize Fractions for Nigeria. Soil Science Society of America Journal, 2014, 78, 1953-1966.	2.2	107
16	Global pedodiversity, taxonomic distance, and the World Reference Base. Geoderma, 2010, 155, 132-139.	5.1	103
17	Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 2017, 14, 1-19.	1.4	102
18	Soil organic carbon in sandy soils: A review. Advances in Agronomy, 2019, 158, 217-310.	5.2	92

#	Article	IF	CITATIONS
19	Assessing Soil Fertility Decline in the Tropics Using Soil Chemical Data. Advances in Agronomy, 2006, 89, 179-225.	5.2	91
20	Soil-forming factors and Soil Taxonomy. Geoderma, 2014, 226-227, 231-237.	5.1	90
21	Digital soil mapping across the globe. Geoderma Regional, 2017, 9, 1-4.	2.1	79
22	Soil pH increase under paddy in South Korea between 2000 and 2012. Agriculture, Ecosystems and Environment, 2016, 221, 205-213.	5.3	77
23	Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma, 2016, 261, 204-221.	5.1	74
24	Land use change and population growth in the Morobe Province of Papua New Guinea between 1975 and 2000. Journal of Environmental Management, 2008, 87, 117-124.	7.8	64
25	Soil chemical and physical properties as indicators of sustainable land management under sugar cane in Papua New Guinea. Geoderma, 1998, 85, 283-306.	5.1	62
26	Soil maps of the world. Geoderma, 2013, 207-208, 256-267.	5.1	62
27	Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties. European Journal of Soil Science, 2020, 71, 316-333.	3.9	62
28	Soils are back on the global agenda. Soil Use and Management, 2008, 24, 327-330.	4.9	60
29	Plantation Agriculture in the Tropics. Outlook on Agriculture, 2005, 34, 11-21.	3.4	58
30	Soil horizon variation: A review. Advances in Agronomy, 2020, 160, 125-185.	5.2	57
31	Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado. Applied Clay Science, 2018, 162, 27-37.	5.2	53
32	Citations and the $\langle i \rangle$ h $\langle i \rangle$ index of soil researchers and journals in the Web of Science, Scopus, and Google Scholar. Peerl, 2013, 1, e183.	2.0	53
33	Title is missing!. , 2001, 230, 115-124.		52
34	Distribution and classification of soils with clay-enriched horizons in the USA. Geoderma, 2013, 209-210, 153-160.	5.1	52
35	The joy of teaching soil science. Geoderma, 2014, 217-218, 1-9.	5.1	52
36	Soil fertility decline in some Major Soil Groupings under permanent cropping in Tanga region, Tanzania. Geoderma, 1997, 75, 215-229.	5.1	51

#	Article	IF	CITATIONS
37	Managing Soils for Recovering from the COVID-19 Pandemic. Soil Systems, 2020, 4, 46.	2.6	51
38	The definition of soil since the early 1800s. Advances in Agronomy, 2016, 137, 73-126.	5.2	50
39	How deep is the soil studied – an analysis of four soil science journals. Plant and Soil, 2020, 452, 5-18.	3.7	49
40	Soil seed bank and growth rates of an invasive species, Piper aduncum, in the lowlands of Papua New Guinea. Journal of Tropical Ecology, 2000, 16, 243-251.	1.1	48
41	Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena, 2017, 149, 43-51.	5.0	47
42	Soil Science in Tropical and Temperate Regionsâ€"Some Differences and Similarities. Advances in Agronomy, 2002, , 269-292.	5.2	45
43	Nitrogen use efficiency of taro and sweet potato in the humid lowlands of Papua New Guinea. Agriculture, Ecosystems and Environment, 2000, 79, 271-280.	5.3	44
44	Chapter 3 Sugarcane for Bioethanol. Advances in Agronomy, 2008, , 125-182.	5.2	44
45	Digital mapping of a soil profile. European Journal of Soil Science, 2019, 70, 27-41.	3.9	44
46	Soils with fragipans in the USA. Catena, 2013, 104, 233-242.	5.0	42
47	Land Cover, Extent, and Properties of Arenosols in Southern Africa. Arid Land Research and Management, 2008, 22, 134-147.	1.6	41
48	Yield decline of sweet potato in the humid lowlands of Papua New Guinea. Agriculture, Ecosystems and Environment, 2000, 79, 259-269.	5.3	40
49	75 years The International Society of Soil Science. Geoderma, 2000, 96, 1-18.	5.1	39
50	Digital Mapping of Topsoil Carbon Content and Changes in the Driftless Area of Wisconsin, USA. Soil Science Society of America Journal, 2015, 79, 155-164.	2.2	39
51	Developments and trends in soil science: 100 volumes of Geoderma (1967–2001). Geoderma, 2001, 100, 217-268.	5.1	36
52	The use of soil classification in journal papers between 1975 and 2014. Geoderma Regional, 2015, 5, 127-139.	2.1	36
53	Effects of carbon on moisture storage in soils of the Wisconsin Central Sands, USA. European Journal of Soil Science, 2019, 70, 565-577.	3.9	36
54	Inorganic nitrogen dynamics in fallows and maize on an Oxisol and Alfisol in the highlands of Kenya. Geoderma, 2000, 98, 11-33.	5.1	32

#	Article	lF	CITATIONS
55	Biomass and nutrient accumulation of Piper aduncum and Imperata cylindrica fallows in the humid lowlands of Papua New Guinea. Forest Ecology and Management, 2001, 144, 19-32.	3.2	32
56	Soil maps of The Netherlands. Geoderma, 2013, 204-205, 1-9.	5.1	32
57	GIS-Based Multi-Criteria Analysis for Arabica Coffee Expansion in Rwanda. PLoS ONE, 2014, 9, e107449.	2.5	32
58	Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA. Geoderma Regional, 2017, 10, 115-125.	2.1	31
59	A method for automated soil horizon delineation using digital images. Geoderma, 2019, 343, 97-115.	5.1	31
60	Soil-dependent responses of US crop yields to climate variability and depth to groundwater. Agricultural Systems, 2021, 190, 103085.	6.1	29
61	The GlobalSoilMap project specifications. , 2014, , 9-12.		29
62	Soil Maps of the United States of America. Soil Science Society of America Journal, 2013, 77, 1117-1132.	2.2	28
63	A soil quality index using Vis-NIR and pXRF spectra of a soil profile. Catena, 2022, 211, 105954.	5.0	28
64	Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA. Remote Sensing, 2019, 11, 1504.	4.0	27
65	Soil horizon delineation using vis-NIR and pXRF data. Catena, 2019, 180, 298-308.	5.0	27
66	Trends in soil science education: Looking beyond the number of students. Journal of Soils and Water Conservation, 2008, 63, 76A-83A.	1.6	26
67	Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis. Catena, 2021, 201, 105190.	5.0	26
68	Soil science and the h index. Scientometrics, 2007, 73, 257-264.	3.0	25
69	Coffee Farming and Soil Management in Rwanda. Outlook on Agriculture, 2013, 42, 47-52.	3.4	25
70	Sampling designs for soil organic carbon stock assessment of soil profiles. Geoderma, 2017, 307, 220-230.	5.1	25
71	The Invasive Shrub Piper aduncum and Rural Livelihoods in the Finschhafen Area of Papua New Guinea. Human Ecology, 2005, 33, 875-893.	1.4	24
72	Classification and distribution of soils with lamellae in the USA. Geoderma, 2013, 206, 92-100.	5.1	24

#	Article	IF	Citations
73	Individual, country, and journal self-citation in soil science. Geoderma, 2010, 155, 434-438.	5.1	22
74	Digital soil morphometrics of krotovinas in a deep Alfisol derived from loess in Shenyang, China. Geoderma, 2017, 301, 11-18.	5.1	21
75	New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture, 2018, 155, 378-385.	7.7	21
76	Soil genesis and classification. Catena, 2013, 104, 251-256.	5.0	20
77	The depiction of soil profiles since the late 1700s. Catena, 2009, 79, 113-127.	5. 0	19
78	Soil maps of Wisconsin. Geoderma, 2012, 189-190, 451-461.	5.1	19
79	Raster sampling of soil profiles. Geoderma, 2018, 318, 99-108.	5.1	19
80	Spatial-temporal analysis of soil water storage and deep drainage under irrigated potatoes in the Central Sands of Wisconsin, USA. Agricultural Water Management, 2019, 217, 226-235.	5.6	19
81	Establishing an Empirical Model for Surface Soil Moisture Retrieval at the U.S. Climate Reference Network Using Sentinel-1 Backscatter and Ancillary Data. Remote Sensing, 2020, 12, 1242.	4.0	19
82	Using vis-NIR and pXRF data to distinguish soil parent materials – An example using 136 pedons from Wisconsin, USA. Geoderma, 2021, 396, 115091.	5.1	19
83	Measuring and Modelling Soil Depth Functions. Progress in Soil Science, 2016, , 225-240.	0.8	18
84	Digital soil mapping of a red clay subsoil covered by loess. Geoderma, 2014, 230-231, 296-304.	5.1	16
85	Predicting the color of sandy soils from Wisconsin, USA. Geoderma, 2020, 361, 114039.	5.1	16
86	Spectral signatures of soil horizons and soil orders – An exploratory study of 270 soil profiles. Geoderma, 2021, 389, 114961.	5.1	16
87	Formation and variation of a 4.5Âm deep Oxisol in southeastern Brazil. Catena, 2021, 206, 105492.	5.0	16
88	GlobalSoilMap.net – A New Digital Soil Map of the World. , 2010, , 423-428.		16
89	Input and output of major nutrients under monocropping sisal in Tanzania. Land Degradation and Development, 1997, 8, 305-310.	3.9	15
90	Nutrient Deficiencies of Agricultural Crops in Papua New Guinea. Outlook on Agriculture, 2000, 29, 97-108.	3.4	15

#	Article	IF	Citations
91	Avaliação de cinco algoritmos de árvores de decisão e três tipos de modelos digitais de elevação para mapeamento digital de solos a nÃvel semidetalhado na Bacia do Lageado Grande, RS, Brasil. Ciencia Rural, 2013, 43, 1967-1973.	0.5	15
92	Sisal Production and Soil Fertility Decline in Tanzania. Outlook on Agriculture, 1995, 24, 91-96.	3.4	14
93	The influence of parent material on soil fertility degradation in the coastal plain of Tanzania. Land Degradation and Development, 1995, 6, 215-221.	3.9	14
94	ACIDIFICATION AND pH BUFFERING CAPACITY OF ALLUVIAL SOILS UNDER SUGARCANE. Experimental Agriculture, 1998, 34, 231-243.	0.9	14
95	Changes in soil fertility and leaf nutrient concentration at a sugar cane plantation in Papua New Guinea. Communications in Soil Science and Plant Analysis, 1998, 29, 1045-1060.	1.4	13
96	Nutrient stocks of short-term fallows on a high base status soil in the humid tropics of Papua New Guinea. Agroforestry Systems, 2004, 63, 33-43.	2.0	13
97	Short-range variation in a Wisconsin soilscape (USA). Eurasian Soil Science, 2017, 50, 198-209.	1.6	13
98	Quantifying short-range variation of soil texture and total carbon of a 330-ha farm. Catena, 2021, 201, 105200.	5.0	13
99	Terra Rossa catenas in Wisconsin, USA. Catena, 2014, 123, 148-152.	5.0	12
100	Major Elements in Soils Along a 2.8–km Altitudinal Gradient on the Tibetan Plateau, China. Pedosphere, 2016, 26, 895-903.	4.0	12
101	Distribution and properties of sandy soils in the conterminous USA – A conceptual thickness model, and taxonomic analysis. Catena, 2020, 195, 104746.	5.0	12
102	Synergistic use of hyperspectral imagery, Sentinelâ€1 and <scp>LiDAR</scp> improves mapping of soil physical and geochemical properties at the farmâ€scale. European Journal of Soil Science, 2021, 72, 1690-1717.	3.9	12
103	Soil Fertility Decline and Fallow Effects in Ferralsols and Acrisols of Sisal Plantations in Tanzania. Experimental Agriculture, 1996, 32, 173-184.	0.9	11
104	Integrated Nutrient Management Research with Sweet Potato in Papua New Guinea. Outlook on Agriculture, 2003, 32, 173-182.	3.4	11
105	A mechanistic model to predict soil thickness in a valley area of Rio Grande do Sul, Brazil. Geoderma, 2018, 309, 17-31.	5.1	11
106	Unraveling location-specific and time-dependent interactions between soil water content and environmental factors in cropped sandy soils using Sentinel-1 and moisture probes. Journal of Hydrology, 2019, 575, 780-793.	5.4	11
107	Retrieving Heterogeneous Surface Soil Moisture at 100 m Across the Globe via Fusion of Remote Sensing and Land Surface Parameters. Frontiers in Water, 2020, 2, .	2.3	11
108	Evaluating three calibration transfer methods for predictions of soil properties using midâ€infrared spectroscopy. Soil Science Society of America Journal, 2021, 85, 501-519.	2.2	11

#	Article	IF	CITATIONS
109	Soils with iron-cemented layers on golf courses in the USA. Geoderma, 2014, 232-234, 198-207.	5.1	10
110	Mulching effects on soil nutrient levels and yield in coffee farming systems in Rwanda. Soil Use and Management, 2020, 36, 58-70.	4.9	10
111	Soil chronosequence and biosequence on old lake sediments of the Burdur Lake in Turkey. Pedosphere, 2021, 31, 882-891.	4.0	10
112	Soil Carbon Research Priorities. , 2014, , 483-490.		10
113	Some Factors Influencing Yield Trends of Sugarcane in Papua New Guinea. Outlook on Agriculture, 1996, 25, 227-234.	3.4	9
114	Open access publishing and soil science – Trends and developments. Geoderma Regional, 2019, 18, e00231.	2.1	9
115	Look at it this Way. Outlook on Agriculture, 2001, 30, 231-237.	3.4	8
116	90 years IUSS and global soil science. Soil Science and Plant Nutrition, 2015, 61, 579-586.	1.9	7
117	Geochemical Fingerprint and Soil Carbon of Sandy Alfisols. Soil Systems, 2019, 3, 59.	2.6	7
118	Quantifying Coarse Fragments in Soil Samples Using a Digital Camera. Eurasian Soil Science, 2019, 52, 954-962.	1.6	7
119	Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess. Pedosphere, 2022, 32, 602-615.	4.0	7
120	Mapping a Profile Wall of a Typic Udipsamments from the Central Sands in Wisconsin, USA. Progress in Soil Science, 2016, , 191-206.	0.8	6
121	Experts address the question: "What are the most important constraints to achieving food security in various parts of Africa?". Natural Resources Forum, 2008, 32, 163-166.	3.6	5
122	Soil science reference books. Catena, 2012, 95, 142-144.	5.0	5
123	Salic Horizons in Soils of the USA. Pedosphere, 2013, 23, 600-608.	4.0	5
124	New Tools for Pedologists: Digital Soil Morphometrics. Soil Horizons, 2015, 56, 1.	0.3	5
125	Impact of Restoration and Management on Aggregation and Organic Carbon Accumulation in Urban Grasslands. Soil Science Society of America Journal, 2016, 80, 992-1002.	2.2	5
126	THE GLOBALSOILMAP PROJECT: PAST, PRESENT, FUTURE, AND NATIONAL EXAMPLES FROM FRANCE. Dokuchaev Soil Bulletin, 2018, , 3-23.	0.6	5

#	Article	IF	CITATIONS
127	Soil Catena Characterization using pXRF and Vis-NIR Spectroscopy in Northwest Turkey. Eurasian Soil Science, 2021, 54, S1-S15.	1.6	5
128	Reconnecting Soils and Agriculture. Outlook on Agriculture, 2012, 41, 225-227.	3.4	4
129	Soil Map Density and a Nation's Wealth and Income. , 2008, , 53-66.		4
130	The challenges of collating legacy data for digital mapping of Nigerian soils., 2012, , 453-458.		4
131	Characterizing soil microbial properties using MIR spectra across 12 ecoclimatic zones (NEON sites). Geoderma, 2022, 409, 115647.	5.1	4
132	Rapid Changes in Sandy Soils under Intensive Agriculture in Wisconsin. Soil Horizons, 2015, 56, 1.	0.3	3
133	Comparing Soil C Stocks from Soil Profile Data Using Four Different Methods. Progress in Soil Science, 2016, , 315-329.	0.8	3
134	Publications for evaluations: The impact of soil science and soil scientists. Journal of Soils and Water Conservation, 2009, 64, 18A-19A.	1.6	2
135	On the Soil in (1960–2009). Soil Horizons, 2012, 53, 30.	0.3	2
136	An Inverted Horizon Soilscape in Wisconsin. Soil Horizons, 2013, 54, 30.	0.3	2
137	Current and Future Soil Research. World Soils Book Series, 2017, , 223-228.	0.2	2
138	GlobalSoilMap project history., 2014,, 3-8.		2
139	Some Noteworthy Soil Science in Wisconsin. Soil Horizons, 2012, 53, 20.	0.3	2
140	Rapid estimation of a soil–water retention curve using visible–near infrared spectroscopy. Journal of Hydrology, 2021, 603, 127195.	5.4	2
141	Digital Soil Morphometrics. , 2023, , 568-578.		2
142	Delineation and description of soil horizons using ground-penetrating radar for soils under boreal forest in Central Karelia (Russia). Catena, 2022, 214, 106285.	5.0	2
143	100 Years of Soil Science Society in the U.S CSA News, 2020, 65, 26-27.	0.0	1
144	History of Soil Studies. World Soils Book Series, 2017, , 7-21.	0.2	1

#	Article	IF	CITATIONS
145	Soil science, population growth and food production: some historical developments., 2007,, 85-97.		O
146	Hypotheses presence and acceptance in seven soil science journals. Geoderma, 2015, 243-244, 10-17.	5.1	0
147	Developments in Digital Soil Morphometrics. Progress in Soil Science, 2016, , 425-433.	0.8	0
148	The U.S. National Committee for Soil Science: Activities, Opportunities for Service. CSA News, 2020, 65, 18-19.	0.0	0
149	Building an International Soil Science. , 2021, , 359-383.		0
150	Prologue—The Roots of Soil Science. , 2021, , 1-35.		0
151	Building an American Soil Survey. , 2021, , 241-281.		0
152	From 1927 to 1960, and a Favor Returned. , 2021, , 435-494.		0
153	Chronicles and Progressions. , 2021, , 531-559.		0
154	Seventh International Congress of Soil Science 1960. , 2021, , 495-530.		0
155	Of Soils and Men. , 2021, , 283-319.		0
156	Case 2 - sisal plantations, Tanzania , 2003, , 289-314.		0
157	Human population and soil degradation, 2003, , 10-60.		0
158	Sugarcane plantations, 2003, , 227-263.		0
159	Soil fertility decline - theoretical considerations , 2003, , 79-138.		0
160	Summary and Conclusions, 2003, , 339-343.		0
161	Forest plantations, 2003, , 197-226.		0
162	Case 1 - sugarcane plantation, Papua New Guinea, 2003, , 264-288.		0

#	Article	lF	CITATIONS
163	Plantation agriculture, 2003, , 61-78.		0
164	Annual crops , 2003, , 139-164.		0
165	Perennial crop plantations, 2003, , 165-196.		0
166	Chapter 4. The Evaluation and Reporting of Soils in Sustainable Agriculture and Food Systems. Issues in Environmental Science and Technology, 2012, , 69-93.	0.4	0
167	GlobalSoilMap and Global Carbon Predictions. , 2014, , 363-372.		0
168	Variation of Soil Properties in a Mollisol Profile Wall. Progress in Soil Science, 2016, , 165-189.	0.8	0
169	Taxonomic Soil Regions. World Soils Book Series, 2017, , 95-128.	0.2	0
170	Endemic, Rare, and Endangered Soils. World Soils Book Series, 2017, , 199-202.	0.2	0
171	Soils and Land Appraisal. World Soils Book Series, 2017, , 213-222.	0.2	0
172	Soil-Forming Processes. World Soils Book Series, 2017, , 55-65.	0.2	0
173	Wisconsin Soils in a Changing Climate. World Soils Book Series, 2017, , 203-211.	0.2	0
174	Erosion: Perennial Crop Plantations. , 2017, , 819-822.		0