Michael Claeys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170810/publications.pdf Version: 2024-02-01

	117625	110387
4,380	34	64
citations	h-index	g-index
112	112	2969
docs citations	times ranked	citing authors
	citations 112	4,38034citationsh-index112112

#	Article	IF	CITATIONS
1	Magnesium as a Methanation Suppressor for Iron- and Cobalt-Based Oxide Catalysts during the Preferential Oxidation of Carbon Monoxide. Catalysts, 2022, 12, 118.	3.5	4
2	Promoted Mo _x C _y â€based Catalysts for the CO ₂ Oxidative Dehydrogenation of Ethane. ChemCatChem, 2022, 14, .	3.7	6
3	Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation. Angewandte Chemie, 2022, 134, .	2.0	5
4	Two become one. Nature Materials, 2022, 21, 492-493.	27.5	0
5	Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
6	Supported Fe _x Ni _y catalysts for the co-activation of CO ₂ and small alkanes. Faraday Discussions, 2021, 229, 208-231.	3.2	6
7	Thermal catalytic conversion: general discussion. Faraday Discussions, 2021, 230, 124-151.	3.2	0
8	CO ₂ Reduction over Mo ₂ C-Based Catalysts. ACS Catalysis, 2021, 11, 1624-1639.	11.2	34
9	Theory: general discussion. Faraday Discussions, 2021, 229, 131-160.	3.2	0
10	Conversion of CO ₂ and small alkanes to platform chemicals over Mo ₂ C-based catalysts. Faraday Discussions, 2021, 230, 68-86.	3.2	5
11	Advanced approaches: general discussion. Faraday Discussions, 2021, 229, 378-421.	3.2	1
12	Nb ₂ O ₅ as a radical modulator during oxidative dehydrogenation and as a Lewis acid promoter in CO ₂ assisted dehydrogenation of octane over confined 2D engineered NiO–Nb ₂ O ₅ –Al ₂ O ₃ . Catalysis Science and Technology, 2021, 11, 5321-5334.	4.1	4
13	Hydrothermal Sintering and Oxidation of an Alumina-Supported Nickel Methanation Catalyst Studied Using In Situ Magnetometry. Catalysts, 2021, 11, 636.	3.5	2
14	Formation of metal-support compounds in cobalt-based Fischer-Tropsch synthesis: A review. Chem Catalysis, 2021, 1, 1014-1041.	6.1	22
15	Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ. Applied Catalysis B: Environmental, 2021, 297, 120450.	20.2	24
16	Dynamics: general discussion. Faraday Discussions, 2021, 229, 489-501.	3.2	0
17	Oxidation of HÃǥg Carbide during High-Temperature Fischer–Tropsch Synthesis: Size-Dependent Thermodynamics and <i>In Situ</i> Observations. ACS Catalysis, 2021, 11, 13866-13879.	11.2	12
18	In-depth characterisation of metal-support compounds in spent Co/SiO2 Fischer-Tropsch model catalysts. Catalysis Today, 2020, 342, 71-78.	4.4	20

#	Article	IF	CITATIONS
19	Sintering of cobalt during FTS: Insights from industrial and model systems. Catalysis Today, 2020, 342, 59-70.	4.4	25
20	Cobalt-nickel bimetallic Fischer-Tropsch catalysts: A combined theoretical and experimental approach. Catalysis Today, 2020, 342, 88-98.	4.4	27
21	Water-induced deactivation of cobalt-based Fischer–Tropsch catalysts. Nature Catalysis, 2020, 3, 962-965.	34.4	53
22	Enhanced Oxygenates Formation in the Fischer–Tropsch Synthesis over Co- and/or Ni-Containing Fe Alloys: Characterization and 2D Gas Chromatographic Product Analysis. ACS Catalysis, 2020, 10, 14661-14677.	11.2	6
23	Operando experimental evidence on the central role of oxygen vacancies during methane combustion. Journal of Catalysis, 2020, 390, 184-195.	6.2	18
24	Decoupling the deactivation mechanisms of a cobalt Fischer–Tropsch catalyst operated at high conversion and â€~simulated' high conversion. Catalysis Science and Technology, 2020, 10, 7056-7066.	4.1	13
25	Environment-Dependent Catalytic Performance and Phase Stability of Co ₃ O ₄ in the Preferential Oxidation of Carbon Monoxide Studied <i>In Situ</i> . ACS Catalysis, 2020, 10, 11892-11911.	11.2	21
26	<i>In situ</i> characterization of Fischer–Tropsch catalysts: a review. Journal Physics D: Applied Physics, 2020, 53, 293001.	2.8	26
27	Impact of Nanoparticle–Support Interactions in Co ₃ O ₄ /Al ₂ O ₃ Catalysts for the Preferential Oxidation of Carbon Monoxide. ACS Catalysis, 2019, 9, 7166-7178.	11.2	54
28	Synthesis, characterisation and water–gas shift activity of nano-particulate mixed-metal (Al, Ti) cobalt oxides. Dalton Transactions, 2019, 48, 13858-13868.	3.3	9
29	Cobalt-Based Fischer–Tropsch Synthesis: A Kinetic Evaluation of Metal–Support Interactions Using an Inverse Model System. Catalysts, 2019, 9, 794.	3.5	23
30	On the use of an in situ magnetometer to study redox and sintering properties of NiO based oxygen carrier materials for chemical looping steam methane reforming. International Journal of Hydrogen Energy, 2019, 44, 18093-18102.	7.1	13
31	Preparation of isolated Co ₃ O ₄ and fcc-Co crystallites in the nanometre range employing exfoliated graphite as novel support material. Nanoscale Advances, 2019, 1, 2910-2923.	4.6	8
32	Catalytic consequences of platinum deposition order on cobalt-based Fischer–Tropsch catalysts with low and high cobalt oxide dispersion. Catalysis Science and Technology, 2019, 9, 3177-3192.	4.1	11
33	Capturing the interconnectivity of water-induced oxidation and sintering of cobalt nanoparticles during the Fischer-Tropsch synthesis in situ. Journal of Catalysis, 2019, 374, 199-207.	6.2	15
34	Water-Induced Formation of Cobalt-Support Compounds under Simulated High Conversion Fischer–Tropsch Environment. ACS Catalysis, 2019, 9, 4902-4918.	11.2	35
35	A promising preparation method for highly active cobalt based Fischer-Tropsch catalysts supported on stabilized Al2O3. Applied Catalysis A: General, 2018, 556, 92-103.	4.3	14
36	Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design. Materials Chemistry and Physics, 2018, 213, 305-312.	4.0	18

#	Article	IF	CITATIONS
37	Role of CO in the Water-Induced Formation of Cobalt Oxide in a High Conversion Fischer–Tropsch Environment. ACS Catalysis, 2018, 8, 3985-3989.	11.2	39
38	Comparing a cobalt-based catalyst with iron-based catalysts for the Fischer-Tropsch XTL-process operating at high conversion. Applied Catalysis A: General, 2018, 549, 51-59.	4.3	37
39	Oxygenate formation over K/β-Mo ₂ C catalysts in the Fischer–Tropsch synthesis. Catalysis Science and Technology, 2018, 8, 3806-3817.	4.1	12
40	Effect of crystallite size on the performance and phase transformation of Co ₃ O ₄ /Al ₂ O ₃ catalysts during CO-PrOx – an in situ study. Faraday Discussions, 2017, 197, 269-285.	3.2	22
41	Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer–Tropsch environment. Faraday Discussions, 2017, 197, 243-268.	3.2	49
42	Hydrocarbon conversion in the production of synthetic fuels: general discussion. Faraday Discussions, 2017, 197, 473-489.	3.2	0
43	Novel photocatalysts: general discussion. Faraday Discussions, 2017, 197, 533-546.	3.2	1
44	Catalysis for Fuels: general discussion. Faraday Discussions, 2017, 197, 165-205.	3.2	8
45	Designing new catalysts for synthetic fuels: general discussion. Faraday Discussions, 2017, 197, 353-388.	3.2	7
46	Co ₃ O ₄ morphology in the preferential oxidation of CO. Catalysis Science and Technology, 2017, 7, 4806-4817.	4.1	35
47	Role of Transient Co-Subcarbonyls in Ostwald Ripening Sintering of Cobalt Supported on Î ³ -Alumina Surfaces. Journal of Physical Chemistry C, 2017, 121, 16739-16753.	3.1	22
48	Aromatics from Syngas: CO Taking Control. CheM, 2017, 3, 202-204.	11.7	8
49	Acetonitrile via CO hydrogenation in the presence of NH3. Catalysis Communications, 2016, 87, 14-17.	3.3	1
50	Cobalt gets in shape. Nature, 2016, 538, 44-45.	27.8	31
51	Hydrogen spillover in the Fischer–Tropsch synthesis: An analysis of gold as a promoter for cobalt–alumina catalysts. Catalysis Today, 2016, 275, 27-34.	4.4	35
52	Application of novel catalysts: general discussion. Faraday Discussions, 2016, 188, 399-426.	3.2	0
53	Effectiveness of catalyst passivation techniques studied in situ with a magnetometer. Catalysis Today, 2016, 275, 135-140.	4.4	25
54	Phase changes studied under in situ conditions—A novel cell. Catalysis Today, 2016, 275, 149-154.	4.4	20

#	Article	IF	CITATIONS
55	Enhanced olefin production in Fischer–Tropsch synthesis using ammonia containing synthesis gas feeds. Catalysis Today, 2016, 275, 94-99.	4.4	21
56	Hydrocarbons via CO2 Hydrogenation Over Iron Catalysts: The Effect of Potassium on Structure and Performance. Catalysis Letters, 2016, 146, 509-517.	2.6	51
57	Hydrogen spillover in the Fischer–Tropsch synthesis: An analysis of platinum as a promoter for cobalt–alumina catalysts. Catalysis Today, 2016, 261, 17-27.	4.4	91
58	Promoting χ-Fe ₅ C ₂ (100) _{0.25} with copper – a DFT study. Journal of Lithic Studies, 2015, 1, 11-18.	0.5	6
59	A DFT perspective of potassium promotion of χ-Fe5C2(100). Applied Catalysis A: General, 2015, 496, 64-72.	4.3	30
60	Formation of nitrogen containing compounds from ammonia co-fed to the Fischer–Tropsch synthesis. Applied Catalysis A: General, 2015, 502, 150-156.	4.3	10
61	Impact of Process Conditions on the Sintering Behavior of an Alumina-Supported Cobalt Fischer–Tropsch Catalyst Studied with an in Situ Magnetometer. ACS Catalysis, 2015, 5, 841-852.	11.2	83
62	Cobalt-Based Fischer–Tropsch Activity and Selectivity as a Function of Crystallite Size and Water Partial Pressure. ACS Catalysis, 2015, 5, 113-121.	11.2	51
63	Chemical energy storage in gaseous hydrocarbons via iron Fischer–Tropsch synthesis from H2/CO2—Kinetics, selectivity and process considerations. Catalysis Today, 2015, 242, 184-192.	4.4	46
64	Pt/Au Alloys as Reduction Promoters for Co/TiO ₂ Fischer-Tropsch Catalysts. Advanced Materials Research, 2014, 1019, 365-371.	0.3	2
65	Triâ€cobalt Carboxylate as a Catalyst and Catalyst Precursor in the Fischer–Tropsch Synthesis. ChemCatChem, 2014, 6, 1707-1713.	3.7	2
66	In situ magnetometer study on the formation and stability of cobalt carbide in Fischer–Tropsch synthesis. Journal of Catalysis, 2014, 318, 193-202.	6.2	126
67	Sizeâ€Dependent Phase Transformation of Catalytically Active Nanoparticles Captured Inâ€Situ. Angewandte Chemie - International Edition, 2014, 53, 1342-1345.	13.8	77
68	Enhanced Activity via Surface Modification of Fe-Based Fischer–Tropsch Catalyst Precursor with Titanium Butoxide. Topics in Catalysis, 2014, 57, 572-581.	2.8	5
69	Choosing a suitable support for Co3O4 as an NH3 oxidation catalyst. Catalysis Science and Technology, 2013, 3, 1905.	4.1	16
70	Comparing silver and copper as promoters in Fe-based Fischer–Tropsch catalysts using delafossite as a model compound. Journal of Catalysis, 2013, 307, 283-294.	6.2	47
71	Copper ferrites: A model for investigating the role of copper in the dynamic iron-based Fischer–Tropsch catalyst. Journal of Catalysis, 2013, 308, 363-373.	6.2	46
72	Structure sensitivity of the Fischer–Tropsch activity and selectivity on alumina supported cobalt catalysts. Journal of Catalysis, 2013, 299, 67-80.	6.2	113

#	Article	IF	CITATIONS
73	Further Investigation into the Formation of Alcohol during Fischer Tropsch Synthesis on Fe-based Catalysts. APCBEE Procedia, 2012, 3, 110-115.	0.5	6
74	Reâ€dispersion of Cobalt on a Model Fischer–Tropsch Catalyst During Reduction–Oxidation–Reduction Cycles. ChemCatChem, 2012, 4, 1411-1419.	3.7	39
75	Effective Utilization of the Catalytically Active Phase: NH3 Oxidation Over Unsupported and Supported Co3O4. Catalysis Letters, 2012, 142, 445-451.	2.6	13
76	Metal Support Interactions in Co3O4/Al2O3 Catalysts Prepared from w/o Microemulsions. Catalysis Letters, 2012, 142, 830-837.	2.6	22
77	Strong-metal–support interaction by molecular design: Fe–silicate interactions in Fischer–Tropsch catalysts. Journal of Catalysis, 2012, 289, 140-150.	6.2	101
78	Preparation of supported nano-sized cobalt oxide and fcc cobalt crystallites. Catalysis Today, 2011, 171, 174-179.	4.4	74
79	Thermodynamic and experimental aspects of â€ ⁻ supercritical' Fischer–Tropsch synthesis. Fuel Processing Technology, 2010, 91, 1250-1255.	7.2	7
80	GC × GC: A novel technique for investigating selectivity in the Fischer–Tropsch synthesis. Catalysis Communications, 2009, 10, 1674-1680.	3.3	16
81	Fischerâ€Iropsch Catalysts for the Biomassâ€toâ€Liquid (BTL)â€Process. Chemical Engineering and Technology, 2008, 31, 655-666.	1.5	312
82	Evaluation of molybdenum-modified alumina support materials for Co-based Fischer-Tropsch catalysts. Applied Catalysis A: General, 2008, 335, 56-63.	4.3	21
83	Theoretical feasibility of CO-activation and Fischer–Tropsch chain growth on mono- and diatomic Ru complexes. Journal of Molecular Catalysis A, 2008, 288, 75-82.	4.8	4
84	Fischer-Tropsch CO-Hydrogenation on SiO2-supported Osmium Complexes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 289-292.	0.7	9
85	A DFT-study on the acidity of Mo–O–Al-clusters. Journal of Molecular Catalysis A, 2007, 266, 254-259.	4.8	7
86	Importance of the Usage Ratio in Iron-Based Fischerâ^'Tropsch Synthesis with Recycle. Industrial & Engineering Chemistry Research, 2006, 45, 8629-8633.	3.7	18
87	Novel synthesis route for egg-shell, egg-white and egg-yolk type of cobalt on silica catalysts. Applied Catalysis A: General, 2006, 301, 138-142.	4.3	32
88	Experimental approaches to the preparation of supported metal nanoparticles. Pure and Applied Chemistry, 2006, 78, 1759-1769.	1.9	67
89	Stability of Nanocrystals:Â Thermodynamic Analysis of Oxidation and Re-reduction of Cobalt in Water/Hydrogen Mixtures. Journal of Physical Chemistry B, 2005, 109, 3575-3577.	2.6	265
90	Basic studies. Studies in Surface Science and Catalysis, 2004, 152, 601-680.	1.5	84

#	Article	IF	CITATIONS
91	Temporal Changes of Fischer–Tropsch Activity and Selectivity Using Ruthenium. Topics in Catalysis, 2003, 26, 139-143.	2.8	12
92	Silica supported cobalt Fischer–Tropsch catalysts: effect of pore diameter of support. Catalysis Today, 2002, 71, 395-402.	4.4	171
93	On the effect of water during Fischer–Tropsch synthesis with a ruthenium catalyst. Catalysis Today, 2002, 71, 419-427.	4.4	106
94	Some evidence refuting the alkenyl mechanism for chain growth in iron-based Fischer–Tropsch synthesis. Catalysis Today, 2002, 71, 343-349.	4.4	24
95	Does mono-atomic Ru catalyse the Fischer-Tropsch synthesis?. Studies in Surface Science and Catalysis, 2000, , 1157-1162.	1.5	6
96	Reactions of α-olefins of different chain length added during Fischer–Tropsch synthesis on a cobalt catalyst in a slurry reactor. Applied Catalysis A: General, 1999, 186, 71-90.	4.3	201
97	Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Applied Catalysis A: General, 1999, 186, 201-213.	4.3	347
98	Transient initial kinetic regimes of Fischer–Tropsch synthesis. Applied Catalysis A: General, 1999, 186, 215-227.	4.3	97
99	Kinetic modelling of Fischer–Tropsch product distributions. Applied Catalysis A: General, 1999, 186, 91-107.	4.3	180
100	Cobalt Cluster Effects in Zirconium Promoted Co/SiO2 Fischer–Tropsch Catalysts. Journal of Catalysis, 1999, 185, 120-130.	6.2	98
101	Initial Episodes of Fischer-Tropsch Synthesis with Cobalt Catalysts. Studies in Surface Science and Catalysis, 1998, , 191-196.	1.5	9
102	Fuels and petrochemicals from CO2 via Fischer-Tropsch synthesis — steady state catalyst activity and selectivity. Studies in Surface Science and Catalysis, 1998, 114, 443-446.	1.5	4
103	Effect of water partial pressure on steady state Fischer-Tropsch activity and selectivity of a promoted cobalt catalyst. Studies in Surface Science and Catalysis, 1997, 107, 193-200.	1.5	88
104	Kinetic regimes of zeolite deactivation and reanimation. Applied Catalysis A: General, 1995, 132, 29-40.	4.3	34
105	Specific inhibition as the kinetic principle of the Fischer-Tropsch synthesis. Topics in Catalysis, 1995, 2, 223-234.	2.8	49
106	Selectivity and mechanism of Fischer-Tropsch synthesis with iron and cobalt catalysts. Studies in Surface Science and Catalysis, 1994, 81, 455-460.	1.5	122
107	Preparation of Pt-Promoted Co/SiO ₂ Catalysts for CO Hydrogenation by Strong Electrostatic Adsorption (SEA). Advanced Materials Research, 0, 1019, 357-364.	0.3	2