
Vitaliy V Dzhemelinskyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of Effects of Laser, Ultrasonic, and Combined Laser-Ultrasonic Hardening Treatments on Surface Properties of AISI 1045 Steel Parts. Lecture Notes in Mechanical Engineering, 2022, , 313-322.	0.4	5
2	Increasing wear and corrosion resistance of steel products by combined laser thermomechanical treatment. Eastern-European Journal of Enterprise Technologies, 2021, 6, 72-80.	0.5	1
3	Effects of the Combined Laser-Ultrasonic Surface Hardening Induced Microstructure and Phase State on Mechanical Properties of AISI D2 Tool Steel. Lecture Notes in Mechanical Engineering, 2020, , 188-198.	0.4	9
4	Surface Finishing of Complexly Shaped Parts Fabricated by Selective Laser Melting. Lecture Notes in Mechanical Engineering, 2020, , 186-195.	0.4	21
5	Combined Thermo-Mechanical Techniques for Post-processing of the SLM-Printed Ni-Cr-Fe Alloy Parts. Lecture Notes in Mechanical Engineering, 2020, , 295-304.	0.4	10
6	Surface Polishing of Laser Powder Bed Fused Superalloy Components by Magnetic Post-treatment. , 2020, , .		6
7	INCREASING THE EFFICIENCY OF SURFACE STRENGTHENING OF METAL PRODUCTS BY COMBINED THERMODEFORMATION PROCESSING. Vibrations in Engineering and Technology, 2020, , 103-110.	0.1	0
8	Surface hardening and finishing of metallic products by hybrid laserÂultrasonic treatment. Eastern-European Journal of Enterprise Technologies, 2018, 1, 35-42.	0.5	17
9	Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment. Surface and Coatings Technology, 2017, 328, 344-354.	4.8	56
10	Hardness Simulation of over-tempered Area During Laser Hardening Treatment. Physics Procedia, 2016, 83, 1357-1366.	1.2	18
11	Surface microrelief and hardness of laser hardened and ultrasonically peened AISI D2 tool steel. Surface and Coatings Technology, 2015, 278, 108-120.	4.8	41
12	Rules of formation of ferroabrasive powder in a magnetoabrasive tool under conditions of circular disposition of the magnetic gaps. Soviet Powder Metallurgy and Metal Ceramics (English Translation) Tj ETQq0 0	0ogBT/O	vezlock 10 Tf
13	Indenter materials for high-temperature hardness measurement. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1973, 12, 168-170.	0.1	3

14	Microhardness of some carbides at various temperatures. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1971, 10, 665-668.	0.1	8
15	Temperature dependence of the hardness of titanium, zirconium, and hafnium carbides. Strength of Materials, 1969, 1, 515-518.	0.5	9
16	Some questions on the choice of materials for indentors for high-temperature microhardness testing. Strength of Materials, 1969, 1, 667-668.	0.5	1