
Romina B Barrozo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The closer the better: Sensory tools and host-association in blood-sucking insects. Journal of Insect Physiology, 2022, 136, 104346.	0.9	3
2	Molecular and functional basis of high-salt avoidance in a blood-sucking insect. IScience, 2022, 25, 104502.	1.9	10
3	Evolution of the Insect PPK Gene Family. Genome Biology and Evolution, 2021, 13, .	1.1	15
4	Sensory Biology of Triatomines. True Bugs (Heteroptera) of the Neotropics, 2021, , 197-214.	1.2	0
5	Mouthpart sensory structures of the human head louse Pediculus humanus capitis. Arthropod Structure and Development, 2020, 59, 100996.	0.8	3
6	Impact of alkaloids in food consumption, metabolism and survival in a blood-sucking insect. Scientific Reports, 2020, 10, 9443.	1.6	20
7	Sensory discrimination between aversive salty and bitter tastes in an haematophagous insect. European Journal of Neuroscience, 2020, 51, 1867-1880.	1.2	10
8	The Sensory Machinery of the Head Louse Pediculus humanus capitis: From the Antennae to the Brain. Frontiers in Physiology, 2019, 10, 434.	1.3	12
9	The use of Leaf Surface Contact Cues During Oviposition Explains Field Preferences in the Willow Sawfly Nematus oligospilus. Scientific Reports, 2019, 9, 4946.	1.6	15
10	Food recognition in hematophagous insects. Current Opinion in Insect Science, 2019, 34, 55-60.	2.2	21
11	Learning Spatial Aversion Is Sensory-Specific in the Hematophagous Insect Rhodnius prolixus. Frontiers in Psychology, 2018, 9, 989.	1.1	12
12	Salt controls feeding decisions in a blood-sucking insect. Journal of Insect Physiology, 2017, 98, 93-100.	0.9	30
13	Nitric oxide contributes to high-salt perception in a blood-sucking insect model. Scientific Reports, 2017, 7, 15551.	1.6	15
14	An inside look at the sensory biology of triatomines. Journal of Insect Physiology, 2017, 97, 3-19.	0.9	57
15	Kissing bugs can generalize and discriminate between different bitter compounds. Journal of Physiology (Paris), 2016, 110, 99-106.	2.1	16
16	Plasticity in Insect Olfaction: To Smell or Not to Smell?. Annual Review of Entomology, 2016, 61, 317-333.	5.7	201
17	Pheromone Modulates Plant Odor Responses in the Antennal Lobe of a Moth. Chemical Senses, 2014, 39, 451-463.	1.1	26
18	Bitter stimuli modulates the feeding decision of a blood-sucking insect via two sensory inputs. Journal of Experimental Biology, 2014, 217, 3708-17.	0.8	41

Romina B Barrozo

#	Article	IF	CITATIONS
19	Plant odour stimuli reshape pheromonal representation in neurons of the antennal lobe macroglomerular complex of a male moth. Journal of Experimental Biology, 2012, 215, 1670-1680.	0.8	41
20	Differential Interactions of Sex Pheromone and Plant Odour in the Olfactory Pathway of a Male Moth. PLoS ONE, 2012, 7, e33159.	1.1	64
21	Mating-induced differential coding of plant odour and sex pheromone in a male moth. European Journal of Neuroscience, 2011, 33, 1841-1850.	1.2	55
22	Brief predator sound exposure elicits behavioral and neuronal long-term sensitization in the olfactory system of an insect. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3401-3405.	3.3	49
23	Cloning of an octopamine/tyramine receptor and plasticity of its expression as a function of adult sexual maturation in the male moth <i>Agrotis ipsilon</i> . Insect Molecular Biology, 2010, 19, 489-499.	1.0	27
24	Mating-induced transient inhibition of responses to sex pheromone in a male moth is not mediated by octopamine or serotonin. Journal of Experimental Biology, 2010, 213, 1100-1106.	0.8	35
25	Switching attraction to inhibition: mating-induced reversed role of sex pheromone in an insect. Journal of Experimental Biology, 2010, 213, 2933-2939.	0.8	66
26	Post-mating sexual abstinence in a male moth. Communicative and Integrative Biology, 2010, 3, 629-630.	0.6	7
27	Antennal pathways in the central nervous system of a blood-sucking bug, Rhodnius prolixus. Arthropod Structure and Development, 2009, 38, 101-110.	0.8	28
28	Age-dependent plasticity of sex pheromone response in the moth, Agrotis ipsilon: Combined effects of octopamine and juvenile hormone. Hormones and Behavior, 2009, 56, 185-191.	1.0	42
29	Temporal modulation and adaptive control of the behavioural response to odours in Rhodnius prolixus. Journal of Insect Physiology, 2008, 54, 1343-1348.	0.9	57
30	Orientation response of haematophagous bugs to CO2: the effect of the temporal structure of the stimulus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192, 827-831.	0.7	26
31	Orientation Behaviour of the Blood-sucking Bug Triatoma infestans to Short-chain Fatty Acids: Synergistic Effect of L-Lactic Acid and Carbon Dioxide. Chemical Senses, 2004, 29, 833-841.	1.1	59
32	Circadian rhythm of behavioural responsiveness to carbon dioxide in the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae). Journal of Insect Physiology, 2004, 50, 249-254.	0.9	57
33	Chemical ecology of insect vectors: the neglected temporal dimension. Trends in Parasitology, 2004, 20, 506-507.	1.5	11
34	The Response of the Blood-sucking Bug Triatoma infestans to Carbon Dioxide and other Host Odours. Chemical Senses, 2004, 29, 319-329.	1.1	102
35	Daily Rhythms in Disease-Vector Insects. Biological Rhythm Research, 2004, 35, 79-92.	0.4	60
36	The role of water vapour in the orientation behaviour of the blood-sucking bug Triatoma infestans (Hemiptera, Reduviidae). Journal of Insect Physiology, 2003, 49, 315-321.	0.9	54

#	Article	IF	CITATIONS
37	Repetitive stimulation of olfactory receptor cells in female silkmoths Bombyx mori L Journal of Insect Physiology, 2002, 48, 825-834.	0.9	20
38	Human epididymal proteins and sperm function during fertilization: un update. Biological Research, 2001, 34, 165-78.	1.5	21