Christian Kerbiriou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/516998/publications.pdf

Version: 2024-02-01

66 papers 2,136 citations

30 h-index 265206 42 g-index

68 all docs 68 docs citations

68 times ranked 2204 citing authors

#	Article	IF	CITATIONS
1	Landscape composition drives the impacts of artificial light at night on insectivorous bats. Environmental Pollution, 2022, 292, 118394.	7.5	13
2	A plea for a worldwide development of dark infrastructure for biodiversity – Practical examples and ways to go forward. Landscape and Urban Planning, 2022, 219, 104332.	7.5	22
3	Even low light pollution levels affect the spatial distribution and timing of activity of a "light tolerant―bat species. Environmental Pollution, 2022, 305, 119267.	7. 5	10
4	Distance to hedgerows drives local repulsion and attraction of wind turbines on bats: Implications for spatial siting. Journal of Applied Ecology, 2022, 59, 2142-2153.	4.0	11
5	Calculation of biodiversity level between different land-uses to improve conservation outcomes of biodiversity offsetting. Land Use Policy, 2021, 101, 105161.	5.6	2
6	Grasping darkness: the dark ecological network as a social-ecological framework to limit the impacts of light pollution on biodiversity. Ecology and Society, 2021, 26, .	2.3	23
7	The extended concept of littoral active zone considering soft sediment shores as social-ecological systems, and an application to Brittany (North-Western France). Estuarine, Coastal and Shelf Science, 2021, 250, 107148.	2.1	15
8	Bat Overpasses Help Bats to Cross Roads Safely by Increasing Their Flight Height. Acta Chiropterologica, 2021, 23, .	0.6	0
9	Adapting street lighting to limit light pollution's impacts on bats. Global Ecology and Conservation, 2021, 28, e01648.	2.1	8
10	Assessing the importance of field margins for bat species and communities in intensive agricultural landscapes. Agriculture, Ecosystems and Environment, 2021, 319, 107494.	5. 3	7
11	Going beyond species richness and abundance: robustness of community specialisation measures in short acoustic surveys. Biodiversity and Conservation, 2021, 30, 343-363.	2.6	3
12	Bats seek refuge in cluttered environment when exposed to white and red lights at night. Movement Ecology, 2021, 9, 3.	2.8	19
13	Landscape composition and lifeâ€history traits influence bat movement and space use: Analysis of 30 years of published telemetry data. Global Ecology and Biogeography, 2021, 30, 2442-2454.	5.8	23
14	Contribution of private gardens to habitat availability, connectivity and conservation of the common pipistrelle in Paris. Landscape and Urban Planning, 2020, 193, 103671.	7.5	36
15	Disentangling effects of local and landscape variables on attractiveness of restored gravelâ€sand pits for bat foraging activities. Land Degradation and Development, 2020, 31, 2329-2339.	3.9	2
16	Switching LPS to LED Streetlight May Dramatically Reduce Activity and Foraging of Bats. Diversity, 2020, 12, 165.	1.7	19
17	Major roads have important negative effects on insectivorous bat activity. Biological Conservation, 2019, 235, 53-62.	4.1	35
18	Accounting for automated identification errors in acoustic surveys. Methods in Ecology and Evolution, 2019, 10, 1171-1188.	5 . 2	33

#	Article	IF	Citations
19	Bat overpasses as an alternative solution to restore habitat connectivity in the context of road requalification. Ecological Engineering, 2019, 131, 34-38.	3.6	11
20	Bat Pass Duration Measurement: An Indirect Measure of Distance of Detection. Diversity, 2019, 11, 47.	1.7	12
21	Reducing light pollution improves connectivity for bats in urban landscapes. Landscape Ecology, 2019, 34, 793-809.	4.2	45
22	Do biodiversity offsets achieve No Net Loss? An evaluation of offsets in a French department. Biological Conservation, 2019, 231, 24-29.	4.1	38
23	Bat overpasses: An insufficient solution to restore habitat connectivity across roads. Journal of Applied Ecology, 2019, 56, 573-584.	4.0	20
24	Potential of bat pass duration measures for studies of bat activity. Bioacoustics, 2019, 28, 177-192.	1.7	20
25	Evidence for distance and illuminance thresholds in the effects of artificial lighting on bat activity. Landscape and Urban Planning, 2018, 175, 123-135.	7.5	52
26	Wind turbines impact bat activity, leading to high losses of habitat use in a biodiversity hotspot. Ecological Engineering, 2018, 112, 51-54.	3.6	30
27	Potential of restoration of gravel-sand pits for Bats. Ecological Engineering, 2018, 110, 137-145.	3.6	11
28	Common bats are more abundant within Natura 2000 areas. Biological Conservation, 2018, 217, 66-74.	4.1	42
29	Modelling landscape connectivity for greater horseshoe bat using an empirical quantification of resistance. Journal of Applied Ecology, 2018, 55, 2600-2611.	4.0	32
30	The Relative Effects of Local and Landscape Characteristics of Hedgerows on Bats. Diversity, 2018, 10, 72.	1.7	20
31	Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance. Biological Conservation, 2018, 226, 205-214.	4.1	52
32	Body size information in large-scale acoustic bat databases. PeerJ, 2018, 6, e5370.	2.0	13
33	Ecological Equivalence Assessment Methods: What Trade-Offs between Operationality, Scientific Basis and Comprehensiveness?. Environmental Management, 2017, 60, 216-230.	2.7	41
34	Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program. Landscape Ecology, 2016, 31, 2471-2483.	4.2	73
35	Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets. Global Ecology and Conservation, 2016, 6, 208-218.	2.1	43
36	The contribution of agent-based simulations to conservation management on a Natura 2000 site. Journal of Environmental Management, 2016, 168, 27-35.	7.8	12

#	Article	IF	CITATIONS
37	Effects of hedgerows on bats and bush crickets at different spatial scales. Acta Oecologica, 2016, 71, 61-72.	1.1	33
38	Is partâ€night lighting an effective measure to limit the impacts of artificial lighting on bats?. Global Change Biology, 2015, 21, 4333-4341.	9.5	72
39	Road network in an agrarian landscape: Potential habitat, corridor or barrier for small mammals?. Acta Oecologica, 2015, 62, 58-65.	1.1	34
40	Bat activity in intensively farmed landscapes with wind turbines and offset measures. Ecological Engineering, 2015, 75, 250-257.	3.6	55
41	Modélisation d'accompagnement en gestion conservatoire. Revue Internationale De Géomatique, 2015, 25, 495-514.	0.1	O
42	Understanding Bat-Habitat Associations and the Effects of Monitoring on Long-Term Roost Success using a Volunteer Dataset. Acta Chiropterologica, 2014, 16, 397-411.	0.6	10
43	Activity of European common bats along railway verges. Ecological Engineering, 2014, 64, 49-56.	3.6	31
44	The Influence of Low Intensities of Light Pollution on Bat Communities in a Semi-Natural Context. PLoS ONE, 2014, 9, e103042.	2.5	67
45	Tree microhabitats as indicators of bird and bat communities in Mediterranean forests. Ecological Indicators, 2013, 34, 221-230.	6.3	106
46	Ecological corridors also operate in an urban matrix: A test case with garden shrews. Urban Ecosystems, 2013, 16, 511-525.	2.4	103
47	Urbanisation effect on <scp>O</scp> rthoptera: which scale matters?. Insect Conservation and Diversity, 2013, 6, 319-327.	3.0	36
48	Offsets and Conservation of the Species of the EU Habitats and Birds Directives. Conservation Biology, 2013, 27, 1335-1343.	4.7	36
49	Which factors influence the occurrence and density of tree microhabitats in Mediterranean oak forests?. Forest Ecology and Management, 2013, 295, 118-125.	3.2	82
50	Role-playing game developed from a modelling process: A relevant participatory tool for sustainable development? A co-construction experiment in an insular biosphere reserve. Land Use Policy, 2013, 32, 96-107.	5.6	27
51	Use of Largeâ€6cale Acoustic Monitoring to Assess Anthropogenic Pressures on Orthoptera Communities. Conservation Biology, 2013, 27, 979-987.	4.7	47
52	Sustain common species and ecosystem functions through biodiversity offsets: response to Pilgrim <i>et al</i> Conservation Letters, 2013, 6, 385-386.	5.7	8
53	Pronounced genetic structure and low genetic diversity in European red-billed chough (Pyrrhocorax) Tj ETQq1 1 0.	.784314 rş 1.5	gBT /Overlo
54	More amphibians than expected in highway stormwater ponds. Ecological Engineering, 2012, 47, 146-154.	3.6	52

#	Article	IF	CITATION
55	Dynamics of a northern fulmar (<i>Fulmarus glacialis</i>) population at the southern limit of its range in Europe. Population Ecology, 2012, 54, 295-304.	1.2	3
56	A co-modelling process of social and natural dynamics on the isle of Ouessant: Sheep, turf and bikes. Environmental Modelling and Software, 2010, 25, 1399-1412.	4. 5	18
57	Possible effects of roadside verges on vole outbreaks in an intensive agrarian landscape. Mammalian Biology, 2010, 75, 92-94.	1.5	13
58	Co-Modeling Process, Negotiations, and Power Relationships: Some Outputs From a MAB Project on the Island of Ouessant. Society and Natural Resources, 2009, 22, 172-188.	1.9	16
59	OECD pressure–state–response indicators for managing biodiversity: a realistic perspective for a French biosphere reserve. Biodiversity and Conservation, 2009, 18, 1719-1732.	2.6	58
60	Tourism in protected areas can threaten wild populations: from individual response to population viability of the chough <i>Pyrrhocorax pyrrhocorax</i>). Journal of Applied Ecology, 2009, 46, 657-665.	4.0	69
61	More species, fewer specialists: 100 years of changes in community composition in an island biogeographical study. Diversity and Distributions, 2009, 15, 641-648.	4.1	43
62	The contribution of motorway stormwater retention ponds to the biodiversity of aquatic macroinvertebrates. Biological Conservation, 2009, 142, 3163-3171.	4.1	117
63	The impact of human frequentation on coastal vegetation in a biosphere reserve. Journal of Environmental Management, 2008, 88, 715-728.	7.8	39
64	Plant and spider communities benefit differently from the presence of planted hedgerows in highway verges. Biological Conservation, 2008, 141, 1581-1590.	4.1	44
65	Demographic consequences of prey availability and diet of Red-billed Choughs <i>Pyrrhocorax pyrrhocorax</i>). Bird Study, 2007, 54, 296-306.	1.0	17
66	Linking territory quality and reproductive success in the Redâ€billed Chough <i>Pyrrhocorax pyrrochorax</i> : implications for conservation management of an endangered population. Ibis, 2006, 148, 352-364.	1.9	27