Mustapha Si-Tahar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5168544/publications.pdf

Version: 2024-02-01

104 papers 7,063 citations

41 h-index 81 g-index

109 all docs

109 docs citations

109 times ranked 10298 citing authors

#	Article	IF	Citations
1	TLR5 signalling is hyper-responsive in porcine cystic fibrosis airways epithelium. Journal of Cystic Fibrosis, 2022, 21, e117-e121.	0.3	5
2	Molecularly Imprinted Hydrogels Selective to Ribavirin as New Drug Delivery Systems to Improve Efficiency of Antiviral Nucleoside Analogue: A Proofâ€ofâ€Concept Study with Influenza A Virus. Macromolecular Bioscience, 2022, 22, e2100291.	2.1	5
3	Synthesis, antibacterial and cytotoxic evaluation of cytosporone E and analogs. Journal of Molecular Structure, 2022, 1252, 132135.	1.8	7
4	The metabolite succinate inhibits influenza virus replication through succinylation and nuclear retention of the viral nucleoprotein. , 2022, , .		O
5	Identification of a host antiviral and anti-inflammatory metabolite that protects against influenza virus-driven morbidity and mortality. , 2022 , , .		O
6	Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein. EMBO Journal, 2022, 41, e108306.	3.5	15
7	Evidence of early increased sialylation of airway mucins and defective mucociliary clearance in CFTR-deficient piglets. Journal of Cystic Fibrosis, 2021, 20, 173-182.	0.3	12
8	Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nature Immunology, 2021, 22, 322-335.	7.0	145
9	Lung compartmentalization of inflammatory biomarkers in COVID-19-related ARDS. Critical Care, 2021, 25, 120.	2.5	15
10	Kallikreinâ€related peptidase 5 contributes to the remodeling and repair of bronchial epithelium. FASEB Journal, 2021, 35, e21838.	0.2	3
11	A Bioluminescent 3CLPro Activity Assay to Monitor SARS-CoV-2 Replication and Identify Inhibitors. Viruses, 2021, 13, 1814.	1.5	12
12	Airway Administration of Flagellin Regulates the Inflammatory Response to <i>Pseudomonas aeruginosa</i> . American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 378-389.	1.4	8
13	Proteinase release from activated neutrophils in mechanically ventilated patients with non-COVID-19 and COVID-19 pneumonia. European Respiratory Journal, 2021, 57, 2003755.	3.1	27
14	Frequency and phenotypical alterations of unconventional T cells in cystic fibrosis. , 2021, , .		0
15	Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathogens, 2021, 17, e1010106.	2.1	12
16	Interleukin-7 protects against bacterial respiratory infection by promoting IL-17A-producing innate T-cell response. Mucosal Immunology, 2020, 13, 128-139.	2.7	31
17	CFTR-deficient pigs display alterations of bone microarchitecture and composition at birth. Journal of Cystic Fibrosis, 2020, 19, 466-475.	0.3	6
18	High Dimensional Single-Cell Analysis Reveals iNKT Cell Developmental Trajectories and Effector Fate Decision. Cell Reports, 2020, 32, 108116.	2.9	45

#	Article	IF	Citations
19	Pulmonary immune responses against SARS-CoV-2 infection: harmful or not?. Intensive Care Medicine, 2020, 46, 1897-1900.	3.9	20
20	Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. Journal of Experimental Medicine, 2020, 217, .	4.2	150
21	Controlled Heat and Humidity-Based Treatment for the Reuse of Personal Protective Equipment: A Pragmatic Proof-of-Concept to Address the Mass Shortage of Surgical Masks and N95/FFP2 Respirators and to Prevent the SARS-CoV2 Transmission. Frontiers in Medicine, 2020, 7, 584036.	1.2	12
22	Intrinsic alterations in peripheral neutrophils from cystic fibrosis newborn piglets. Journal of Cystic Fibrosis, 2020, 19, 830-836.	0.3	6
23	Impact of the TAP-like transporter in antigen presentation and phagosome maturation. Molecular Immunology, 2019, 113, 75-86.	1.0	11
24	Pseudomonas aeruginosa Lipoxygenase LoxA Contributes to Lung Infection by Altering the Host Immune Lipid Signaling. Frontiers in Microbiology, 2019, 10, 1826.	1.5	25
25	Tissue kallikrein regulates alveolar macrophage apoptosis early in influenza virus infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L1127-L1140.	1.3	11
26	In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. Journal of Controlled Release, 2019, 303, 24-33.	4.8	18
27	Inactivation of the interleukin-22 pathway in the airways of cystic fibrosis patients. Cytokine, 2019, 113, 470-474.	1.4	10
28	Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection. Scientific Reports, 2018, 8, 1749.	1.6	13
29	Insights on animal models to investigate inhalation therapy: Relevance for biotherapeutics. International Journal of Pharmaceutics, 2018, 536, 116-126.	2.6	34
30	Ten-year trends in intensive care admissions for respiratory infections in the elderly. Annals of Intensive Care, 2018, 8, 84.	2.2	63
31	<i>Pseudomonas aeruginosa</i> flagellum is critical for invasion, cutaneous persistence and induction of inflammatory response of skin epidermis. Virulence, 2018, 9, 1163-1175.	1.8	28
32	Thymic Program Directing the Functional Development of $\hat{I}^3\hat{I}$ T17 Cells. Frontiers in Immunology, 2018, 9, 981.	2.2	16
33	Treatment of Pseudomonas aeruginosa Biofilm Present in Endotracheal Tubes by Poly- <scp>I</scp> -Lysine. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	14
34	Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases. Biochemical Pharmacology, 2017, 131, 52-67.	2.0	34
35	Kallikrein-Related Peptidase 5 Contributes to H3N2 Influenza Virus Infection in Human Lungs. Journal of Virology, 2017, 91, .	1.5	18
36	Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. European Respiratory Journal, 2017, 50, 1602434.	3.1	75

#	Article	IF	Citations
37	<i>Pseudomonas aeruginosa</i> proteolytically alters the interleukin 22-dependent lung mucosal defense. Virulence, 2017, 8, 810-820.	1.8	21
38	Neutrophils can disarm NK cell response through cleavage of NKp46. Journal of Leukocyte Biology, 2017, 101, 253-259.	1.5	20
39	FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Frontiers in Immunology, 2017, 8, 123.	2.2	19
40	FPR2: A Novel Promising Target for the Treatment of Influenza. Frontiers in Microbiology, 2017, 8, 1719.	1.5	27
41	The Pig: A Relevant Model for Evaluating the Neutrophil Serine Protease Activities during Acute Pseudomonas aeruginosa Lung Infection. PLoS ONE, 2016, 11, e0168577.	1.1	15
42	In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: Potential involvement in cystic fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L664-L675.	1.3	31
43	Altered expression of the CCN genes in the lungs of mice in response to cigarette smoke exposure and viral and bacterial infections. Gene, 2016, 586, 176-183.	1.0	11
44	Formyl Peptide Receptor 2 Plays a Deleterious Role During Influenza A Virus Infections. Journal of Infectious Diseases, 2016, 214, 237-247.	1.9	34
45	Neutrophilic Cathepsin C Is Maturated by a Multistep Proteolytic Process and Secreted by Activated Cells during Inflammatory Lung Diseases. Journal of Biological Chemistry, 2016, 291, 8486-8499.	1.6	45
46	Targeting host calpain proteases decreases influenza A virus infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L689-L699.	1.3	17
47	Combined Metabolomics and Transcriptomics Approaches to Assess the IL-6 Blockade as a Therapeutic of ALS: Deleterious Alteration of Lipid Metabolism. Neurotherapeutics, 2016, 13, 905-917.	2.1	46
48	Interleukin-22 receptor is overexpressed in nonsmall cell lung cancer and portends a poor prognosis. European Respiratory Journal, 2016, 47, 1277-1280.	3.1	21
49	Aerosol Route to Administer Teicoplanin in Mechanical Ventilation: <i>In Vitro</i> Study, Lung Deposition and Pharmacokinetic Analyses in Pigs. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 290-298.	0.7	14
50	Neutrophil proteases alter the interleukin-22-receptor-dependent lung antimicrobial defence. European Respiratory Journal, 2015, 46, 771-782.	3.1	36
51	Computed Tomography (CT) Scanning Facilitates Early Identification of Neonatal Cystic Fibrosis Piglets. PLoS ONE, 2015, 10, e0143459.	1.1	7
52	Histidinylated polylysines: An alternative antibacterial and fluidifying agent in cystic fibrosis.**., 2015,		0
53	Effect of formulation on the stability and aerosol performance of a nebulized antibody. MAbs, 2014, 6, 1347-1355.	2.6	74
54	Protective Role of LGP2 in Influenza Virus Pathogenesis. Journal of Infectious Diseases, 2014, 210, 214-223.	1.9	29

#	Article	IF	Citations
55	Poly- <scp>l</scp> -Lysine Compacts DNA, Kills Bacteria, and Improves Protease Inhibition in Cystic Fibrosis Sputum. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 703-709.	2.5	24
56	Interleukin-22 Reduces Lung Inflammation during Influenza A Virus Infection and Protects against Secondary Bacterial Infection. Journal of Virology, 2013, 87, 6911-6924.	1.5	140
57	LIM-Only Protein FHL2 Activates NF-κB Signaling in the Control of Liver Regeneration and Hepatocarcinogenesis. Molecular and Cellular Biology, 2013, 33, 3299-3308.	1.1	33
58	The pig as a model for investigating the role of neutrophil serine proteases in human inflammatory lung diseases. Biochemical Journal, 2012, 447, 363-370.	1.7	26
59	Asparagine Endopeptidase Controls Anti-Influenza Virus Immune Responses through TLR7 Activation. PLoS Pathogens, 2012, 8, e1002841.	2.1	55
60	Interleukin-22 Is Produced by Invariant Natural Killer T Lymphocytes during Influenza A Virus Infection. Journal of Biological Chemistry, 2012, 287, 8816-8829.	1.6	159
61	Influenza A Induces the Major Secreted Airway Mucin MUC5AC in a Protease–EGFR–Extracellular Regulated Kinase–Sp1–Dependent Pathway. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 149-157.	1.4	76
62	Asparagine endopeptidase is required for optimum TLR7 signaling and for influenza virus elimination in vivo. Molecular Immunology, 2012, 51, 24.	1.0	0
63	A lossâ€ofâ€function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Molecular Medicine, 2011, 3, 142-152.	3.3	91
64	Ambivalent Role of the Innate Immune Response in Rabies Virus Pathogenesis. Journal of Virology, 2011, 85, 6657-6668.	1.5	52
65	Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. Journal of Experimental Medicine, 2011, 208, 125-134.	4.2	230
66	Correction: Potential Role of Invariant NKT Cells in the Control of Pulmonary Inflammation and CD8+T Cell Response during Acute Influenza A Virus H3N2 Pneumonia. Journal of Immunology, 2011, 187, 1515-1515.	0.4	1
67	Potential Role of Invariant NKT Cells in the Control of Pulmonary Inflammation and CD8+ T Cell Response during Acute Influenza A Virus H3N2 Pneumonia. Journal of Immunology, 2011, 186, 5590-5602.	0.4	88
68	Innate Sensing of HIV-Infected Cells. PLoS Pathogens, 2011, 7, e1001284.	2.1	171
69	Double-Stranded RNA Exacerbates Pulmonary Allergic Reaction through TLR3: Implication of Airway Epithelium and Dendritic Cells. Journal of Immunology, 2010, 185, 451-459.	0.4	69
70	Innate immunity and inflammation $\hat{a}\in$ " two facets of the same anti-infectious reaction. Clinical and Experimental Immunology, 2009, 156, 194-198.	1.1	56
71	Lack of MyD88 Protects the Immunodeficient Host Against Fatal Lung Inflammation Triggered by the Opportunistic Bacteria <i>Burkholderia cenocepacia</i>). Journal of Immunology, 2009, 183, 670-676.	0.4	22
72	Study of Human RIG-I Polymorphisms Identifies Two Variants with an Opposite Impact on the Antiviral Immune Response. PLoS ONE, 2009, 4, e7582.	1.1	48

#	Article	IF	Citations
73	Differential interaction of bacterial species from the Burkholderia cepacia complex with human airway epithelial cells. Microbes and Infection, 2008, 10, 52-59.	1.0	12
74	TLR 5, but neither TLR2 nor TLR4, is involved in lung epithelial cell response to <i>Burkholderia cenocepacia</i> . FEMS Immunology and Medical Microbiology, 2008, 54, 37-44.	2.7	22
75	Control of <i>Pseudomonas aeruginosa</i> in the Lung Requires the Recognition of Either Lipopolysaccharide or Flagellin. Journal of Immunology, 2008, 181, 586-592.	0.4	106
76	Cutting Edge: Innate Immune Response Triggered by Influenza A Virus Is Negatively Regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-Dependent Pathway. Journal of Immunology, 2008, 180, 2034-2038.	0.4	149
77	In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. Journal of Experimental Medicine, 2008, 205, 1381-1393.	4.2	491
78	Aspergillus fumigatus-induced Interleukin-8 Synthesis by Respiratory Epithelial Cells Is Controlled by the Phosphatidylinositol 3-Kinase, p38 MAPK, and ERK1/2 Pathways and Not by the Toll-like Receptor-MyD88 Pathway. Journal of Biological Chemistry, 2008, 283, 30513-30521.	1.6	90
79	Cutting Edge: Influenza A Virus Activates TLR3-Dependent Inflammatory and RIG-I-Dependent Antiviral Responses in Human Lung Epithelial Cells. Journal of Immunology, 2007, 178, 3368-3372.	0.4	355
80	The Role of Flagellin versus Motility in Acute Lung Disease Caused byPseudomonas aeruginosa. Journal of Infectious Diseases, 2007, 196, 289-296.	1.9	71
81	Role of Toll-like receptors in lung innate defense against invasive aspergillosis. Distinct impact in immunocompetent and immunocompromized hosts. Clinical Immunology, 2007, 124, 238-243.	1.4	47
82	Detrimental Contribution of the Toll-Like Receptor (TLR)3 to Influenza A Virus–Induced Acute Pneumonia. PLoS Pathogens, 2006, 2, e53.	2.1	447
83	TLRs 2 and 4 Are Not Involved in Hypersusceptibility to Acute <i>Pseudomonas aeruginosa</i> Infections. Journal of Immunology, 2005, 175, 3927-3934.	0.4	95
84	Involvement of Toll-Like Receptor 2 in Experimental Invasive Pulmonary Aspergillosis. Infection and Immunity, 2005, 73, 5420-5425.	1.0	103
85	Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-stranded RNA and Influenza A Virus. Journal of Biological Chemistry, 2005, 280, 5571-5580.	1.6	591
86	Response of Human Pulmonary Epithelial Cells to Lipopolysaccharide Involves Toll-like Receptor 4 (TLR4)-dependent Signaling Pathways. Journal of Biological Chemistry, 2004, 279, 2712-2718.	1.6	320
87	Cutting Edge: The Immunostimulatory Activity of the Lung Surfactant Protein-A Involves Toll-Like Receptor 4. Journal of Immunology, 2002, 168, 5989-5992.	0.4	305
88	Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: Transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology, 2001, 120, 1666-1679.	0.6	176
89	Adenosine induces polarized secretion of interleukin-6 in intestinal epithelial cells: Bidirectional epithelial/neutrophil paracrine regulation in model crypt abscess. Gastroenterology, 2001, 120, A184-A185.	0.6	О
90	The CC Chemokines MDC and TARC Induce Platelet Activation Via CCR4. Thrombosis Research, 2001, 101, 279-289.	0.8	86

#	Article	IF	Citations
91	Negative regulation of epithelium-neutrophil interactions via activation of CD44. American Journal of Physiology - Cell Physiology, 2001, 280, C423-C432.	2.1	23
92	Neutrophil-epithelial crosstalk at the intestinal lumenal surface mediated by reciprocal secretion of adenosine and IL-6. Journal of Clinical Investigation, 2001, 107, 861-869.	3.9	164
93	Polarity of A2b adenosine receptor expression determines characteristics of receptor desensitization. American Journal of Physiology - Cell Physiology, 2000, 278, C1230-C1236.	2.1	20
94	Phosphoinositide 3-kinase inhibition reverses platelet aggregation triggered by the combination of the neutrophil proteinases elastase and cathepsin G without impairing \hat{l} ±llb \hat{l} 23integrin activation. FEBS Letters, 2000, 484, 184-188.	1.3	14
95	Adhesion molecules expressed on homing lymphocytes in model intestinal epithelia. Gastroenterology, 2000, 118, 289-298.	0.6	38
96	Constitutive and regulated secretion of secretory leukocyte proteinase inhibitor by human intestinal epithelial cells. Gastroenterology, 2000, 118, 1061-1071.	0.6	70
97	Proteolysis of monocyte CD14 by human leukocyte elastase inhibits lipopolysaccharide-mediated cell activation. Journal of Clinical Investigation, 1999, 103, 1039-1046.	3.9	109
98	RGDS glycosylated peptides as inhibitors of cellâ€attachment and platelet aggregation. Chemical Biology and Drug Design, 1998, 52, 51-59.	1.2	0
99	hPepT1-mediated epithelial transport of bacteria-derived chemotactic peptides enhances neutrophil-epithelial interactions Journal of Clinical Investigation, 1998, 102, 2011-2018.	3.9	85
100	Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils. Journal of Leukocyte Biology, 1997, 61, 695-702.	1.5	130
101	Specific Inhibition of Thrombin-Induced Cell Activation by the Neutrophil Proteinases Elastase, Cathepsin G, and Proteinase 3: Evidence for Distinct Cleavage Sites Within the Aminoterminal Domain of the Thrombin Receptor. Blood, 1997, 89, 1944-1953.	0.6	112
102	Human Neutrophil Elastase Proteolytically Activates the Platelet Integrin \hat{l} ±IIb \hat{l} 23 through Cleavage of the Carboxyl Terminus of the \hat{l} ±IIb Subunit Heavy Chain. Journal of Biological Chemistry, 1997, 272, 11636-11647.	1.6	70
103	The phospholipase C/protein kinase C pathway is involved in cathepsin G-induced human platelet activation: comparison with thrombin. Biochemical Journal, 1996, 313, 401-408.	1.7	33
104	Modulation by superoxide anions of neutrophil-mediated platelet activation. Biochemical Pharmacology, 1994, 47, 1401-1404.	2.0	6