List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5168446/publications.pdf Version: 2024-02-01

FARING SU

#	Article	IF	CITATIONS
1	Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy and Environmental Science, 2011, 4, 717-724.	15.6	852
2	A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2012, 2, 2358.	1.7	619
3	Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 2015, 5, 22759-22776.	1.7	411
4	Enhanced Investigation of CO Methanation over Ni/Al ₂ O ₃ Catalysts for Synthetic Natural Gas Production. Industrial & Engineering Chemistry Research, 2012, 51, 4875-4886.	1.8	260
5	Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. Journal of Materials Chemistry, 2012, 22, 17254.	6.7	212
6	CO methanation on ordered mesoporous Ni–Cr–Al catalysts: Effects of the catalyst structure and Cr promoter on the catalytic properties. Journal of Catalysis, 2016, 337, 221-232.	3.1	123
7	Mesoporous CoFe2O4 nanospheres cross-linked by carbon nanotubes as high-performance anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7444.	5.2	118
8	Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation. Applied Catalysis A: General, 2014, 488, 37-47.	2.2	111
9	Effect of nickel nanoparticle size in Ni/Î \pm -Al2O3 on CO methanation reaction for the production of synthetic natural gas. Catalysis Science and Technology, 2013, 3, 2009.	2.1	110
10	Highly active and stable Ni/γ-Al ₂ O ₃ catalysts selectively deposited with CeO ₂ for CO methanation. RSC Advances, 2014, 4, 16094-16103.	1.7	94
11	Nickel Catalysts Supported on Barium Hexaaluminate for Enhanced CO Methanation. Industrial & Engineering Chemistry Research, 2012, 51, 10345-10353.	1.8	89
12	Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener?. Journal of Materials Chemistry A, 2016, 4, 552-560.	5.2	88
13	Nickel catalysts supported on calcium titanate for enhanced CO methanation. Catalysis Science and Technology, 2013, 3, 490-499.	2.1	76
14	Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 10161.	5.2	75
15	Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4483.	5.2	72
16	Nanostructured trimetallic Pt/FeRuC, Pt/NiRuC, and Pt/CoRuC catalysts for methanol electrooxidation. Journal of Materials Chemistry, 2012, 22, 13643.	6.7	65
17	Yolk Bishell Mn _{<i>x</i>} Co _{1–<i>x</i>} Fe ₂ O ₄ Hollow Microspheres and Their Embedded Form in Carbon for Highly Reversible Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 6300-6309.	4.0	63
18	Preparation of hierarchical dandelion-like CuO microspheres with enhanced catalytic performance for dimethyldichlorosilane synthesis. Catalysis Science and Technology, 2012, 2, 1953.	2.1	62

FABING SU

#	Article	IF	CITATIONS
19	A Review on the Reaction Mechanism of Hydrodesulfurization and Hydrodenitrogenation in Heavy Oil Upgrading. Energy & Fuels, 2021, 35, 10998-11016.	2.5	62
20	Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5859-5865.	5.2	60
21	Ordered Mesoporous Ni–Fe–Al Catalysts for CO Methanation with Enhanced Activity and Resistance to Deactivation. Industrial & Engineering Chemistry Research, 2017, 56, 9809-9820.	1.8	57
22	Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction. Catalysis Science and Technology, 2012, 2, 1207.	2.1	54
23	Intercorrelation of structure and performance of Ni–Mg/Al ₂ O ₃ catalysts prepared with different methods for syngas methanation. Catalysis Science and Technology, 2014, 4, 472-481.	2.1	50
24	Facile Solvothermal Synthesis of Porous Cubic Cu Microparticles as Copper Catalysts for Rochow Reaction. ACS Applied Materials & amp; Interfaces, 2012, 4, 1295-1302.	4.0	48
25	Novel leaflike Cu–O–Sn nanosheets as highly efficient catalysts for the Rochow reaction. Journal of Catalysis, 2016, 337, 1-13.	3.1	45
26	Flower-like CuO microspheres with enhanced catalytic performance for dimethyldichlorosilane synthesis. RSC Advances, 2012, 2, 2254.	1.7	44
27	A Co ₃ O ₄ –CeO ₂ functionalized SBA-15 monolith with a three-dimensional framework improves NO _x -assisted soot combustion. RSC Advances, 2015, 5, 26815-26822.	1.7	43
28	One-dimensional Cu-based catalysts with layered Cu–Cu2O–CuO walls for the Rochow reaction. Nano Research, 2016, 9, 1377-1392.	5.8	42
29	Single-atom Sn-Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. National Science Review, 2020, 7, 600-608.	4.6	42
30	MnOx–CeO2 supported on a three-dimensional and networked SBA-15 monolith for NOx-assisted soot combustion. RSC Advances, 2014, 4, 14879.	1.7	41
31	Recent Advances in Rochowâ€Müller Process Research: Driving to Molecular Catalysis and to A More Sustainable Silicone Industry. ChemCatChem, 2019, 11, 2757-2779.	1.8	39
32	Synergistic effect in bimetallic copper–silver (Cu _x Ag) nanoparticles enhances silicon conversion in Rochow reaction. RSC Advances, 2015, 5, 54364-54371.	1.7	38
33	Preparation of porous carbon microspheres anode materials from fine needle coke powders for lithium-ion batteries. RSC Advances, 2015, 5, 11115-11123.	1.7	35
34	Highly stable Ni/SiC catalyst modified by Al ₂ O ₃ for CO methanation reaction. RSC Advances, 2016, 6, 9631-9639.	1.7	35
35	Template preparation of high-surface-area barium hexaaluminate as nickel catalyst support for improved CO methanation. RSC Advances, 2013, 3, 18156.	1.7	34
36	Hierarchical zinc-copper oxide hollow microspheres as active Rochow reaction catalysts: The formation and effect of charge transferable interfaces. Journal of Catalysis, 2017, 348, 233-245.	3.1	32

#	Article	IF	CITATIONS
37	Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres: Facile hydrothermal synthesis and applications. Nano Research, 2017, 10, 381-396.	5.8	32
38	Multiple transition metal oxide mesoporous nanospheres with controllable composition for lithium storage. Journal of Materials Chemistry A, 2014, 2, 5041-5050.	5.2	29
39	Scalable synthesis of porous silicon/carbon microspheres as improved anode materials for Li-ion batteries. RSC Advances, 2014, 4, 43114-43120.	1.7	28
40	Preparation of high-surface-area Ni/α-Al ₂ O ₃ catalysts for improved CO methanation. RSC Advances, 2015, 5, 7539-7546.	1.7	28
41	Controllable wet synthesis of multicomponent copper-based catalysts for Rochow reaction. RSC Advances, 2015, 5, 73011-73019.	1.7	27
42	High-performance Si-Containing anode materials in lithium-ion batteries: A superstructure of Si@Co–NC composite works effectively. Green Energy and Environment, 2022, 7, 116-129.	4.7	27
43	Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Research, 2018, 11, 804-819.	5.8	26
44	Urchin-like ZnO microspheres synthesized by thermal decomposition of hydrozincite as a copper catalyst promoter for the Rochow reaction. RSC Advances, 2012, 2, 4164.	1.7	25
45	Solvothermal synthesis of copper (I) chloride microcrystals with different morphologies as copper-based catalysts for dimethyldichlorosilane synthesis. Journal of Colloid and Interface Science, 2013, 404, 16-23.	5.0	24
46	Impact of the Cu2O microcrystal planes on active phase formation in the Rochow reaction and an experimental and theoretical understanding of the reaction mechanism. Journal of Catalysis, 2018, 361, 73-83.	3.1	24
47	Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithium-ion batteries. Electrochimica Acta, 2020, 331, 135331.	2.6	24
48	Promoting effect of In 2 O 3 on CuO for the Rochow reaction: The formation of P–N junctions at the hetero-interfaces. Journal of Catalysis, 2017, 348, 110-124.	3.1	23
49	Flower-like ZnO grown on urchin-like CuO microspheres for catalytic synthesis of dimethyldichlorosilane. RSC Advances, 2013, 3, 9794.	1.7	22
50	One-pot hydrothermal growth of raspberry-like CeO2 on CuO microsphere as copper-based catalyst for Rochow reaction. Applied Surface Science, 2015, 359, 120-129.	3.1	22
51	Phase-controlled synthesis of Ni nanocrystals with high catalytic activity in 4-nitrophenol reduction. Journal of Materials Chemistry A, 2020, 8, 22143-22154.	5.2	22
52	Partially Reduced CuO Nanoparticles as Multicomponent Cu-Based Catalysts for the Rochow Reaction. Industrial & Engineering Chemistry Research, 2013, 52, 6662-6668.	1.8	21
53	Necessity of moderate metal-support interaction in Ni/Al ₂ O ₃ for syngas methanation at high temperatures. RSC Advances, 2015, 5, 10187-10196.	1.7	21
54	Anti-sintering ZrO ₂ -modified Ni/α-Al ₂ O ₃ catalyst for CO methanation. RSC Advances, 2016, 6, 20979-20986.	1.7	21

#	Article	IF	CITATIONS
55	ZnO supported on Cu2O{1 0 0} enhances charge transfer in dimethyldichlorosilane synthesis. Journal of Catalysis, 2019, 374, 284-296.	3.1	21
56	Single Ir Atoms Anchored on Ordered Mesoporous WO ₃ Are Highly Efficient for the Selective Catalytic Reduction of NO with CO under Oxygenâ€rich Conditions. ChemCatChem, 2021, 13, 1834-1846.	1.8	21
57	In-situ growth of heterophase Ni nanocrystals on graphene for enhanced catalytic reduction of 4-nitrophenol. Nano Research, 2022, 15, 1230-1237.	5.8	21
58	SiO ₂ -stabilized Ni/t-ZrO ₂ catalysts with ordered mesopores: one-pot synthesis and their superior catalytic performance in CO methanation. Catalysis Science and Technology, 2016, 6, 3529-3543.	2.1	20
59	Aerobic Oxidation of Benzyl Alcohol over Activated Carbon Supported Manganese and Vanadium Catalysts: Effect of Surface Oxygen-Containing Groups. Catalysis Letters, 2011, 141, 149-157.	1.4	18
60	Controllably oxidized copper flakes as multicomponent copper-based catalysts for the Rochow reaction. RSC Advances, 2014, 4, 7826.	1.7	18
61	Lowâ€Cost Synthesis of Porous Silicon via Ferriteâ€Assisted Chemical Etching and Their Application as Siâ€Based Anodes for Liâ€Ion Batteries. Advanced Electronic Materials, 2015, 1, 1400059.	2.6	18
62	Heterojunctions generated in SnO ₂ –CuO nanocatalysts for improved catalytic property in the Rochow reaction. RSC Advances, 2015, 5, 63355-63362.	1.7	17
63	A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. Nano Research, 2020, 13, 2819-2827.	5.8	17
64	Architectural Cu2O@CuO mesocrystals as superior catalyst for trichlorosilane synthesis. Journal of Colloid and Interface Science, 2021, 589, 198-207.	5.0	17
65	Attrition-resistant Ni–Mg/Al ₂ O ₃ catalyst for fluidized bed syngas methanation. Catalysis Science and Technology, 2015, 5, 3119-3129.	2.1	16
66	V-promoted Ni/Al2O3 catalyst for synthetic natural gas (SNG) production: Catalyst preparation methodologies. Korean Journal of Chemical Engineering, 2016, 33, 1599-1605.	1.2	16
67	Subnanometric Pt on Cu Nanoparticles Confined in Yâ€zeolite: Highlyâ€efficient Catalysts for Selective Catalytic Reduction of NO <i>x</i> by CO. ChemCatChem, 2021, 13, 1568-1577.	1.8	16
68	Hierarchically interconnected porous Mn Co3-O4 spinels for Low-temperature catalytic reduction of NO by CO. Journal of Catalysis, 2022, 406, 72-86.	3.1	16
69	Highly Dispersed Ni Nanocatalysts Derived from NiMnAl-Hydrotalcites as High-Performing Catalyst for Low-Temperature Syngas Methanation. Catalysts, 2019, 9, 282.	1.6	14
70	Impact of oxygen vacancy in CuO-ZnO catalysts on the selectivity of dimethyldichlorosilane monomer in the Rochow reaction. Molecular Catalysis, 2021, 504, 111453.	1.0	14
71	Well-defined hydroxyapatite–polycation nanohybrids via surface-initiated atom transfer radical polymerization for biomedical applications. Journal of Materials Chemistry, 2012, 22, 9358.	6.7	13
72	Enhancement of ZIF-8 derived N-doped carbon/silicon composites for anode in lithium ions batteries. Journal of Alloys and Compounds, 2021, 872, 159712.	2.8	13

FABING SU

#	Article	IF	CITATIONS
73	Approach to generating the right active phase in the "Direct―synthesis of trimethoxysilanes using the CuCl-Cu2O catalyst. Applied Surface Science, 2021, 544, 148915.	3.1	12
74	Facile synthesis of ordered mesoporous Ni–Zr–Al catalysts with high hydrothermal stability for CO methanation. RSC Advances, 2015, 5, 84186-84194.	1.7	11
75	Porous (CuO) _x ZnO hollow spheres as efficient Rochow reaction catalysts. CrystEngComm, 2016, 18, 2808-2819.	1.3	11
76	Honeycomb-like CuO/ZnO hybrid nanocatalysts prepared from solid waste generated in the organosilane industry. RSC Advances, 2016, 6, 59737-59748.	1.7	9
77	Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017, 60, 1215-1226.	3.5	9
78	Recycling the CoMo/Al ₂ O ₃ catalyst for effectively hydro-upgrading shale oil with high sulfur content and viscosity. RSC Advances, 2020, 10, 37287-37298.	1.7	9
79	Structural Design and Synthesis of an SnO ₂ @C@Coâ€NC Composite as a Highâ€Performance Anode Material for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 12882-12890.	1.7	9
80	Use of the active-phase Cu3Si alloy as superior catalyst to direct synthesis of trichlorosilane via silicon hydrochlorination. Journal of Solid State Chemistry, 2021, 304, 122591.	1.4	9
81	Partially charged single-atom Ru supported on ZrO2 nanocrystals for highly efficient ethylene hydrosilylation with triethoxysilane. Nano Research, 2022, 15, 5857-5864.	5.8	9
82	High-performance nickel manganese ferrite/oxidized graphene composites as flexible and binder-free anodes for Li-ion batteries. RSC Advances, 2015, 5, 40018-40025.	1.7	8
83	Yolkâ€5hellâ€5tructured CuOâ^'ZnOâ^'In ₂ O ₃ Trimetallic Oxide Mesocrystal Microspheres as an Efficient Catalyst for Trichlorosilane Production. ChemCatChem, 2020, 12, 1596-1602.	1.8	8
84	Synthesis of porous microspheres composed of graphitized carbon@amorphous silicon/carbon layers as high performance anode materials for Li-ion batteries. RSC Advances, 2014, 4, 55010-55015.	1.7	6
85	Controlled Synthesis of Heterostructured SnO2-CuO Composite Hollow Microspheres as Efficient Cu-Based Catalysts for the Rochow Reaction. Catalysts, 2018, 8, 144.	1.6	6
86	<i>In situ</i> generating Cu ₂ O/Cu heterointerfaces on the Cu ₂ O cube surface to enhance interface charge transfer for the Rochow reaction. Catalysis Science and Technology, 2021, 11, 2202-2213.	2.1	5
87	CuO/ZrO2 co-promoted by ZnO, Sn, and CuP shows high efficiency for dimethyldichlorosilane production in the Rochow-MÃ1/4ller reaction. Applied Catalysis A: General, 2022, 636, 118582.	2.2	5
88	Ni _{0.33} Mn _{0.33} Co _{0.33} Fe ₂ O ₄ nanoparticles anchored on oxidized carbon nanotubes as advanced anode materials in Li-ion batteries. RSC Advances, 2014, 4, 33769-33775.	1.7	4
89	Ni-Ni ₃ P/SiO ₂ Catalyst for Highly Selective Production of Silicon Tetrachloride via Silicon Hydrochlorination. Industrial & Engineering Chemistry Research, 2022, 61, 5066-5079.	1.8	4
90	Methanation of CO ₂ over <i>Y</i> b-Promoted Ni/Al ₂ O ₃ Catalysts Prepared by Solution Combustion. Energy & Fuels, 2022, 36, 5360-5374.	2.5	4

#	Article	IF	CITATIONS
91	Designing and preparing carbon anode materials modified with N and Fe-nanoparticle: Creating the interior electric field to improve their electrochemical performance. Electrochimica Acta, 2021, 383, 138367.	2.6	3
92	One-pot catalytic conversion of methanol to C6–C21 hydrocarbons over bi-functional MFe ₂ O ₄ (M = Ni, Zn, Mn, Co) catalysts. RSC Advances, 2015, 5, 13374-13384.	1.7	2
93	Syngas Methanation over Sprayâ€Granulated Ni/Al ₂ O ₃ Catalyst in a Laboratory Transportâ€Bed Reactor. Chemical Engineering and Technology, 2019, 42, 129-136.	0.9	2
94	Introduction of ZnO, Sn, and P promoters in CuO/CeO2 catalysts for improved production of dimethyldichlorosilane in the Rochow-Müller reaction. , 2022, 1, 249-260.		1