
Neville Firth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5168061/publications.pdf Version: 2024-02-01

Νενίι ε Ειστή

#	Article	IF	CITATIONS
1	Bacterial antigen is directly delivered to the draining lymph nodes and activates CD8 + T cells during Staphylococcus aureus skin infection. Immunology and Cell Biology, 2021, 99, 299-308.	2.3	4
2	Evolving origin-of-transfer sequences on staphylococcal conjugative and mobilizable plasmids—who's mimicking whom?. Nucleic Acids Research, 2021, 49, 5177-5188.	14.5	8
3	Classifying mobile genetic elements and their interactions from sequence data: The importance of existing biological knowledge. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104685118.	7.1	4
4	Evolution of a 72-Kilobase Cointegrant, Conjugative Multiresistance Plasmid in Community-Associated Methicillin-Resistant Staphylococcus aureus Isolates from the Early 1990s. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	12
5	Remodeling of pSK1 Family Plasmids and Enhanced Chlorhexidine Tolerance in a Dominant Hospital Lineage of Methicillin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	18
6	Staphylococcal Plasmids, Transposable and Integrative Elements. Microbiology Spectrum, 2018, 6, .	3.0	29
7	Construction of Challenging Proline–Proline Junctions via Diselenide–Selenoester Ligation Chemistry. Journal of the American Chemical Society, 2018, 140, 13327-13334.	13.7	55
8	Mobile Genetic Elements Associated with Antimicrobial Resistance. Clinical Microbiology Reviews, 2018, 31, .	13.6	1,355
9	Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Current Opinion in Microbiology, 2017, 38, 1-9.	5.1	104
10	Replication of Staphylococcal Resistance Plasmids. Frontiers in Microbiology, 2017, 8, 2279.	3.5	49
11	Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein. PLoS ONE, 2016, 11, e0156944.	2.5	4
12	An updated view of plasmid conjugation and mobilization in <i>Staphylococcus</i> . Mobile Genetic Elements, 2016, 6, e1208317.	1.8	83
13	Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci. Journal of Bacteriology, 2016, 198, 888-897.	2.2	18
14	Structural and sequence requirements for the antisense RNA regulating replication of staphylococcal multiresistance plasmid pSK41. Plasmid, 2015, 78, 17-25.	1.4	8
15	Convergent Adaptation in the Dominant Global Hospital Clone ST239 of Methicillin-Resistant Staphylococcus aureus. MBio, 2015, 6, e00080.	4.1	81
16	Genetics: Accessory Elements and Genetic Exchange. , 2014, , 413-426.		19
17	Staphylococcus aureusSurface Proteins Involved in Adaptation to Oxacillin Identified Using a Novel Cell Shaving Approach. Journal of Proteome Research, 2014, 13, 2954-2972.	3.7	41
18	Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nature Immunology, 2014, 15, 45-53.	14.5	242

Neville Firth

#	Article	IF	CITATIONS
19	Mechanism of staphylococcal multiresistance plasmid replication origin assembly by the RepA protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9121-9126.	7.1	32
20	Biology of the staphylococcal conjugative multiresistance plasmid pSK41. Plasmid, 2013, 70, 42-51.	1.4	27
21	Molecular basis of antibiotic multiresistance transfer in <i>Staphylococcus aureus</i> . Proceedings of the United States of America, 2013, 110, 2804-2809.	7.1	44
22	Two-Plasmid Vector System for Independently Controlled Expression of Green and Red Fluorescent Fusion Proteins in Staphylococcus aureus. Applied and Environmental Microbiology, 2013, 79, 3133-3136.	3.1	18
23	Genetic requirements for replication initiation of the staphylococcal multiresistance plasmid pSK41. Microbiology (United Kingdom), 2012, 158, 1456-1467.	1.8	11
24	A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 666-676.	1.8	40
25	Major Families of Multiresistant Plasmids from Geographically and Epidemiologically Diverse Staphylococci. G3: Genes, Genomes, Genetics, 2011, 1, 581-591.	1.8	92
26	Analysis of the prototypical Staphylococcus aureus multiresistance plasmid pSK1. Plasmid, 2010, 64, 135-142.	1.4	45
27	Complete Nucleotide Sequence and Comparative Analysis of pPR9, a 41.7-Kilobase Conjugative Staphylococcal Multiresistance Plasmid Conferring High-Level Mupirocin Resistance. Antimicrobial Agents and Chemotherapy, 2010, 54, 2252-2257.	3.2	39
28	Structure and Filament Dynamics of the pSK41 Actin-like ParM Protein. Journal of Biological Chemistry, 2010, 285, 10130-10140.	3.4	43
29	Complete Genome Sequence of <i>Staphylococcus aureus</i> Strain JKD6008, an ST239 Clone of Methicillin-Resistant <i>Staphylococcus aureus</i> with Intermediate-Level Vancomycin Resistance. Journal of Bacteriology, 2010, 192, 5848-5849.	2.2	71
30	Prevalence of Fst-like toxin–antitoxin systems. Microbiology (United Kingdom), 2010, 156, 975-977.	1.8	31
31	The Staphylococcus aureus pSK41 plasmid-encoded ArtA protein is a master regulator of plasmid transmission genes and contains a RHH motif used in alternate DNA-binding modes. Nucleic Acids Research, 2009, 37, 6970-6983.	14.5	22
32	The replicons of Gram-positive bacteria: A family of broadly distributed but narrow host range plasmids. Plasmid, 2009, 61, 94-109.	1.4	61
33	A multimer resolution system contributes to segregational stability of the prototypical staphylococcal conjugative multiresistance plasmid pSK41. FEMS Microbiology Letters, 2008, 284, 58-67.	1.8	15
34	Analysis of the pSK1 replicon, a prototype from the staphylococcal multiresistance plasmid family. Microbiology (United Kingdom), 2008, 154, 3084-3094.	1.8	35
35	Segrosome structure revealed by a complex of ParR with centromere DNA. Nature, 2007, 450, 1268-1271.	27.8	90
36	Replication Control of Staphylococcal Multiresistance Plasmid pSK41: an Antisense RNA Mediates Dual-Level Regulation of Rep Expression. Journal of Bacteriology, 2006, 188, 4404-4412.	2.2	29

Neville Firth

#	Article	IF	CITATIONS
37	Staphylococcus aureus multiresistance plasmid pSK41: analysis of the replication region, initiator protein binding and antisense RNA regulation. Molecular Microbiology, 2004, 51, 497-509.	2.5	47
38	Stable low-copy-number Staphylococcus aureus shuttle vectors. Microbiology (United Kingdom), 2003, 149, 785-794.	1.8	54
39	A Single Gene on the Staphylococcal Multiresistance Plasmid pSK1 Encodes a Novel Partitioning System. Journal of Bacteriology, 2003, 185, 2143-2152.	2.2	55
40	Analysis and characterization of the IncFV plasmid pED208 transfer region. Plasmid, 2002, 48, 24-37.	1.4	38
41	An IS257-Derived Hybrid Promoter Directs Transcription of a tetA(K) Tetracycline Resistance Gene in theStaphylococcus aureus Chromosomal mecRegion. Journal of Bacteriology, 2000, 182, 3345-3352.	2.2	41
42	In Vitro Resistance of <i>Staphylococcus aureus</i> to Thrombin-Induced Platelet Microbicidal Protein Is Associated with Alterations in Cytoplasmic Membrane Fluidity. Infection and Immunity, 2000, 68, 3548-3553.	2.2	138
43	Replication of Staphylococcal Multiresistance Plasmids. Journal of Bacteriology, 2000, 182, 2170-2178.	2.2	73
44	Plasmid-Mediated Resistance to Thrombin-Induced Platelet Microbicidal Protein in Staphylococci: Role of the <i>qacA</i> Locus. Antimicrobial Agents and Chemotherapy, 1999, 43, 2395-2399.	3.2	78
45	Nucleotide Sequence of the F Plasmid Leading Region. Plasmid, 1999, 41, 219-225.	1.4	27
46	Mobile elements in the evolution and spread of multiple-drug resistance in staphylococci. Drug Resistance Updates, 1998, 1, 49-58.	14.4	45
47	Complete Nucleotide Sequence of pSK41: Evolution of Staphylococcal Conjugative Multiresistance Plasmids. Journal of Bacteriology, 1998, 180, 4350-4359.	2.2	162
48	Molecular Analysis of a Mobilizable Theta-Mode Trimethoprim Resistance Plasmid from Coagulase-Negative Staphylococci. Plasmid, 1997, 38, 13-24.	1.4	37
49	Molecular Evolution of Multiplyâ€Antibioticâ€Resistant Staphylococci. Novartis Foundation Symposium, 1997, 207, 167-191.	1.1	16
50	Enterococcal Pheromone-Like Activity Derived from a Lipoprotein Signal Peptide Encoded by a Staphylococcus aureus Plasmid. Advances in Experimental Medicine and Biology, 1997, 418, 1041-1044.	1.6	9
51	IS257-mediated cointegration in the evolution of a family of staphylococcal trimethoprim resistance plasmids. Journal of Bacteriology, 1996, 178, 6070-6073.	2.2	53
52	A protein family associated with filament biogenesis in bacteria. Molecular Microbiology, 1995, 17, 1218-1219.	2.5	6
53	Multidrug Resistance Plasmid pSK108 from Coagulase-Negative Staphylococci; Relationships to Staphylococcus aureus qacC Plasmids. Plasmid, 1995, 34, 62-67.	1.4	45
54	Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene, 1993, 136, 13-25.	2.2	58

#	Article	IF	CITATIONS
55	Characterization of the F plasmid bifunctional conjugation gene, traG. Molecular Genetics and Genomics, 1992, 232, 145-153.	2.4	68
56	Nucleotide sequence of the F plasmid transfer gene, traH: identification of a new gene and a promoter within the transfer operon. Gene, 1989, 75, 157-165.	2.2	17
57	Staphylococcal Plasmids, Transposable and Integrative Elements. , 0, , 499-520.		1