Giancarlo Morelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5167867/publications.pdf

Version: 2024-02-01

106 papers 4,046 citations

30 h-index 59 g-index

109 all docs

 $\begin{array}{c} 109 \\ \\ \text{docs citations} \end{array}$

109 times ranked 5977 citing authors

#	Article	IF	CITATIONS
1	Peptideâ€based hydrogels as delivery systems for doxorubicin. Journal of Peptide Science, 2022, 28, e3301.	1.4	22
2	Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends. Scientific Reports, 2022, 12, 759.	3.3	9
3	Preparation and In Vitro Evaluation of RITUXfab-Decorated Lipoplexes to Improve Delivery of siRNA Targeting C1858T PTPN22 Variant in B Lymphocytes. International Journal of Molecular Sciences, 2022, 23, 408.	4.1	3
4	Multicomponent Hydrogel Matrices of Fmocâ€FF and Cationic Peptides for Application in Tissue Engineering. Macromolecular Bioscience, 2022, 22, e2200128.	4.1	9
5	Effects of surface nanopatterning on internalization and amyloid aggregation of the fragment 264-277 of Nucleophosmin 1. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111439.	5.0	15
6	Fabrication of fluorescent nanospheres by heating PEGylated tetratyrosine nanofibers. Scientific Reports, 2021, 11, 2470.	3.3	10
7	Foldâ€Sensitive Visible Fluorescence in βâ€Sheet Peptide Structures. Advanced Optical Materials, 2021, 9, 2002247.	7.3	10
8	Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Frontiers in Bioengineering and Biotechnology, 2021, 9, 641372.	4.1	30
9	Peptide-Based Hydrogels and Nanogels for Delivery of Doxorubicin. International Journal of Nanomedicine, 2021, Volume 16, 1617-1630.	6.7	40
10	Self-Supporting Hydrogels Based on Fmoc-Derivatized Cationic Hexapeptides for Potential Biomedical Applications. Biomedicines, 2021, 9, 678.	3.2	14
11	Amplified spontaneous emission and gain in highly concentrated Rhodamine-doped peptide derivative. Scientific Reports, 2021, 11, 17609.	3.3	6
12	The Introduction of a Cysteine Residue Modulates The Mechanical Properties of Aromaticâ€Based Solid Aggregates and Selfâ€Supporting Hydrogels. Chemistry - A European Journal, 2021, 27, 14886-14898.	3.3	15
13	Fluorescence Emission of Selfâ€assembling Amyloidâ€like Peptides: Solution versus Solid State. ChemPhysChem, 2021, 22, 2215-2221.	2.1	6
14	Proteostasis unbalance of nucleophosmin 1 in Acute Myeloid Leukemia: An aggregomic perspective. International Journal of Biological Macromolecules, 2020, 164, 3501-3507.	7.5	20
15	Stable Formulations of Peptide-Based Nanogels. Molecules, 2020, 25, 3455.	3.8	19
16	Antioxidant Effects of PS5, a Peptidomimetic of Suppressor of Cytokine Signaling 1, in Experimental Atherosclerosis. Antioxidants, 2020, 9, 754.	5.1	9
17	Longâ€Range Fluorescence Propagation in Amyloidogenic βâ€6heet Films and Fibers. Advanced Optical Materials, 2020, 8, 2000056.	7.3	19
18	Bi-functional peptide-based 3D hydrogel-scaffolds. Soft Matter, 2020, 16, 7006-7017.	2.7	20

#	Article	IF	Citations
19	Peptide-Based Soft Hydrogels Modified with Gadolinium Complexes as MRI Contrast Agents. Pharmaceuticals, 2020, 13, 19.	3.8	29
20	Engineered \hat{l}^2 -hairpin scaffolds from human prion protein regions: Structural and functional investigations of aggregates. Bioorganic Chemistry, 2020, 96, 103594.	4.1	10
21	Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. Journal of Materials Chemistry B, 2019, 7, 5142-5155.	5.8	73
22	Role of the Metal Center in the Modulation of the Aggregation Process of Amyloid Model Systems by Square Planar Complexes Bearing 2-(2'-pyridyl)benzimidazole Ligands. Pharmaceuticals, 2019, 12, 154.	3.8	21
23	Selfâ€Assembly of PEGylated Diphenylalanines into Photoluminescent Fibrillary Aggregates. ChemPhysChem, 2019, 20, 2774-2782.	2.1	22
24	Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials. Soft Matter, 2019, 15, 487-496.	2.7	70
25	Platinum(II) O,S Complexes Inhibit the Aggregation of Amyloid Model Systems. International Journal of Molecular Sciences, 2019, 20, 829.	4.1	31
26	Easy formulation of liposomal doxorubicin modified with a bombesin peptide analogue for selective targeting of GRP receptors overexpressed by cancer cells. Drug Delivery and Translational Research, 2019, 9, 215-226.	5.8	18
27	Amyloid fibers deriving from the aromatic core of C-terminal domain of nucleophosmin 1. International Journal of Biological Macromolecules, 2019, 122, 517-525.	7.5	21
28	Amyloidâ€Like Fibrillary Morphology Originated by Tyrosineâ€Containing Aromatic Hexapeptides. Chemistry - A European Journal, 2018, 24, 6804-6817.	3.3	28
29	Selfâ€Assembling of Fmocâ€GC Peptide Nucleic Acid Dimers into Highly Fluorescent Aggregates. Chemistry - A European Journal, 2018, 24, 4729-4735.	3.3	21
30	Structural Characterization of Selfâ€Assembled Tetraâ€Tryptophan Based Nanostructures: Variations on a Common Theme. ChemPhysChem, 2018, 19, 1635-1642.	2.1	22
31	Structureâ€activity studies of peptidomimetics based on kinaseâ€inhibitory region of suppressors of cytokine signaling 1. Peptide Science, 2018, 110, e23082.	1.8	8
32	Enhanced uptake of gH625 by blood brain barrier compared to liver in vivo: characterization of the mechanism by an in vitro model and implications for delivery. Scientific Reports, 2018, 8, 13836.	3.3	13
33	Assembly modes of hexaphenylalanine variants as function of the charge states of their terminal ends. Soft Matter, 2018, 14, 8219-8230.	2.7	18
34	Cross-beta nanostructures based on dinaphthylalanine Gd-conjugates loaded with doxorubicin. Scientific Reports, 2017, 7, 307.	3.3	23
35	Photoluminescent Peptideâ€Based Nanostructures as FRET Donor for Fluorophore Dye. Chemistry - A European Journal, 2017, 23, 8741-8748.	3.3	16
36	Dimerization in tailoring uptake efficacy of the HSV-1 derived membranotropic peptide gH625. Scientific Reports, 2017, 7, 9434.	3.3	17

#	Article	IF	CITATIONS
37	Structural Characterization of PEGylated Hexaphenylalanine Nanostructures Exhibiting Green Photoluminescence Emission. Chemistry - A European Journal, 2017, 23, 14039-14048.	3.3	34
38	Interactions of cisplatin analogues with lysozyme: a comparative analysis. BioMetals, 2017, 30, 733-746.	4.1	13
39	Gadolinium containing telechelic PEGâ€polymers endâ€capped by diâ€phenylalanine motives as potential supramolecular MRI contrast agents. Journal of Peptide Science, 2017, 23, 122-130.	1.4	17
40	Insights into amyloid-like aggregation of H2 region of the C-terminal domain of nucleophosmin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 176-185.	2.3	20
41	Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells. International Journal of Nanomedicine, 2017, Volume 12, 501-514.	6.7	24
42	Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics. Molecules, 2017, 22, 1217.	3.8	78
43	Supramolecular Delivery Systems for Non-Platinum Metal-Based Anticancer Drugs. Critical Reviews in Therapeutic Drug Carrier Systems, 2017, 34, 149-183.	2.2	8
44	Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria. International Journal of Molecular Sciences, 2016, 17, 785.	4.1	119
45	Self-assembly of PEGylated tetra-phenylalanine derivatives: structural insights from solution and solid state studies. Scientific Reports, 2016, 6, 26638.	3.3	32
46	The influence of liposomal formulation on the incorporation and retention of PNA oligomers. Colloids and Surfaces B: Biointerfaces, 2016, 145, 462-469.	5.0	7
47	Liposome antibody–ionophore conjugate antiproliferative activity increases by cellular metallostasis alteration. MedChemComm, 2016, 7, 2364-2367.	3.4	6
48	Hierarchical Analysis of Selfâ€Assembled PEGylated Hexaphenylalanine Photoluminescent Nanostructures. Chemistry - A European Journal, 2016, 22, 16586-16597.	3.3	38
49	Pre-clinical evaluation of eight DOTA coupled gastrin-releasing peptide receptor (GRP-R) ligands for in vivo targeting of receptor-expressing tumors. EJNMMI Research, 2016, 6, 17.	2.5	22
50	Effect of cisplatin containing liposomes formulated by unsaturated chain-containing lipids on gynecological tumor cells. Journal of Liposome Research, 2016, 26, 307-312.	3.3	4
51	Destabilisation, aggregation, toxicity and cytosolic mislocalisation of nucleophosmin regions associated with acute myeloid leukemia. Oncotarget, 2016, 7, 59129-59143.	1.8	41
52	Peptide Materials Obtained by Aggregation of Polyphenylalanine Conjugates as Gadoliniumâ€Based Magnetic Resonance Imaging Contrast Agents. Advanced Functional Materials, 2015, 25, 7003-7016.	14.9	40
53	Review peptideâ€ŧargeted liposomes for selective drug delivery: Advantages and problematic issues. Biopolymers, 2015, 104, 462-479.	2.4	48
54	The renaissance era of peptides in drug discovery at the 14th Naples workshop on bioactive peptides. Journal of Peptide Science, 2015, 21, 321-322.	1.4	0

#	Article	IF	Citations
55	Silver Nanoparticles as Potential Antibacterial Agents. Molecules, 2015, 20, 8856-8874.	3.8	1,212
56	Incorporation of Naked Peptide Nucleic Acids into Liposomes Leads to Fast and Efficient Delivery. Bioconjugate Chemistry, 2015, 26, 1533-1541.	3.6	25
57	Liposomal doxorubicin doubly functionalized with CCK8 and R8 peptide sequences for selective intracellular drug delivery. Journal of Peptide Science, 2015, 21, 415-425.	1.4	19
58	CCK8 peptide-labeled Pluronic \hat{A} F127 micelles as a targeted vehicle of gold-based anticancer chemotherapeutics. MedChemComm, 2015, 6, 155-163.	3.4	16
59	gH625: A milestone in understanding the many roles of membranotropic peptides. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 16-25.	2.6	51
60	Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. International Journal of Nanomedicine, 2014, 9, 1537.	6.7	53
61	Influence of PEG length on conformational and binding properties of CCK peptides exposed by supramolecular aggregates. Biopolymers, 2014, 102, 304-312.	2.4	5
62	Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment. International Journal of Nanomedicine, 2014, 9, 2137.	6.7	13
63	Exploitation of viral properties for intracellular delivery. Journal of Peptide Science, 2014, 20, 468-478.	1.4	27
64	Target selective micelles for bombesin receptors incorporating Au(III)-dithiocarbamato complexes. International Journal of Pharmaceutics, 2014, 473, 194-202.	5.2	28
65	Structural Insights into and Activity Analysis of the Antimicrobial Peptide Myxinidin. Antimicrobial Agents and Chemotherapy, 2014, 58, 5280-5290.	3.2	54
66	Peptide inhibitors against herpes simplex virus infections. Journal of Peptide Science, 2013, 19, 148-158.	1.4	57
67	Liposomes derivatized with tetrabranched neurotensin peptides via click chemistry reactions. New Journal of Chemistry, 2013, 37, 3528.	2.8	11
68	Nanostructures based on monoolein or diolein and amphiphilic gadolinium complexes as MRI contrast agents. Journal of Materials Chemistry B, 2013, 1, 617-628.	5.8	9
69	Octreotide labeled aggregates containing platinum complexes as nanovectors for drug delivery. Journal of Peptide Science, 2013, 19, 190-197.	1.4	11
70	Peptide-Lipid Interactions: Experiments and Applications. International Journal of Molecular Sciences, 2013, 14, 18758-18789.	4.1	86
71	Bombesin peptide antagonist for target-selective delivery of liposomal doxorubicin on cancer cells. Journal of Drug Targeting, 2013, 21, 240-249.	4.4	31
72	Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polymer Journal, 2013, 45, 481-493.	2.7	84

#	Article	IF	Citations
73	Nanoparticles exposing neurotensin tumorâ€specific drivers. Journal of Peptide Science, 2013, 19, 198-204.	1.4	20
74	13th Naples Workshop on Bioactive Peptides Conformation and activity of peptides: relationships and interactions. Journal of Peptide Science, 2013, 19, 181-181.	1.4	0
75	Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. International Journal of Nanomedicine, 2012, 7, 2007.	6.7	37
76	Amphiphilic CCK peptides assembled in supramolecular aggregates: structural investigations and in vitro studies. Molecular BioSystems, 2011, 7, 862-870.	2.9	17
77	Nanoparticles containing octreotide peptides and gadolinium complexes for MRI applications. Journal of Peptide Science, 2011, 17, 154-162.	1.4	25
78	Gastrin and cholecystokinin peptideâ€based radiopharmaceuticals: an <i>in vivo</i> and <i>in vitro</i> comparison. Journal of Peptide Science, 2011, 17, 405-412.	1.4	14
79	Targetâ€Selective Drug Delivery through Liposomes Labeled with Oligobranched Neurotensin Peptides. ChemMedChem, 2011, 6, 678-685.	3.2	41
80	Peptide″abeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells. Biopolymers, 2011, 96, 88-96.	2.4	14
81	Clickable Functionalization of Liposomes with the gH625 Peptide from <i>Herpes simplex</i> Virus Typeâ€I for Intracellular Drug Delivery. Chemistry - A European Journal, 2011, 17, 12659-12668.	3.3	57
82	Naposomes: a new class of peptide-derivatized, target-selective multimodal nanoparticles for imaging and therapeutic applications. Therapeutic Delivery, 2011, 2, 235-257.	2.2	11
83	Peptide modified nanocarriers for selective targeting of bombesin receptors. Molecular BioSystems, 2010, 6, 878.	2.9	35
84	Micelles obtained by aggregation of gemini surfactants containing the CCK8 peptide and a gadolinium complex. Journal of Biological Inorganic Chemistry, 2009, 14, 587-599.	2.6	6
85	Micelles derivatized with octreotide as potential targetâ€selective contrast agents in MRI. Journal of Peptide Science, 2009, 15, 242-250.	1.4	39
86	Supramolecular aggregates containing lipophilic Gd(III) complexes as contrast agents in MRI. Coordination Chemistry Reviews, 2009, 253, 2193-2213.	18.8	124
87	Colloidal particles composed of amphiphilic molecules binding gadolinium complexes and peptides as tumor-specific contrast agents in MRI: physico–chemical characterization. Soft Matter, 2009, , .	2.7	2
88	Polymerized mixed aggregates containing gadolinium complex and CCK8 peptide. Colloid and Polymer Science, 2008, 286, 1643-1652.	2.1	2
89	Micelles by selfâ€assembling peptideâ€conjugate amphiphile: synthesis and structural characterization. Journal of Peptide Science, 2008, 14, 903-910.	1.4	12
90	Peptideâ€Containing Aggregates as Selective Nanocarriers for Therapeutics. ChemMedChem, 2008, 3, 594-602.	3.2	28

#	Article	IF	CITATIONS
91	Peptides and Gd Complexes Containing Colloidal Assemblies as Tumor-Specific Contrast Agents in MRI: Physicochemical Characterization. Biophysical Journal, 2007, 93, 1736-1746.	0.5	17
92	Peptide Derivatized Lamellar Aggregates as Target-Specific MRI Contrast Agents. ChemBioChem, 2007, 8, 950-955.	2.6	23
93	Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers. Biopolymers, 2007, 88, 115-121.	2.4	46
94	Structural and Relaxometric Characterization of Peptide Aggregates Containing Gadolinium Complexes as Potential Selective Contrast Agents in MRI. ChemPhysChem, 2007, 8, 2526-2538.	2.1	44
95	Synthesis and biological evaluation of cyclic and branched peptide analogues as ligands for cholecystokinin type 1 receptor. Bioorganic and Medicinal Chemistry, 2007, 15, 5845-5853.	3.0	6
96	The [Tc(N)(PNP)]2+ metal fragment labeled cholecystokinin-8 (CCK8) peptide for CCK-2 receptors imaging:in vitro andin vivo studies. Journal of Peptide Science, 2007, 13, 211-219.	1.4	16
97	High-relaxivity supramolecular aggregates containing peptides and Gd complexes as contrast agents in MRI. Journal of Biological Inorganic Chemistry, 2007, 12, 267-276.	2.6	39
98	Supramolecular Aggregates of Amphiphilic Gadolinium Complexes as Blood Pool MRI/MRA Contrast Agents:  Physicochemical Characterization. Langmuir, 2006, 22, 6635-6643.	3.5	42
99	New synthetic strategy for o-NBS protected amino acids and their use in synthesis of mono-benzylated peptides. Tetrahedron Letters, 2005, 46, 6637-6640.	1.4	15
100	Criteria for the Design and Biological Characterization of Radiolabeled Peptide-Based Pharmaceuticals. BioDrugs, 2004, 18, 279-295.	4.6	18
101	Physicochemical Properties of Mixed Micellar Aggregates Containing CCK Peptides and Gd Complexes Designed as Tumor Specific Contrast Agents in MRI. Journal of the American Chemical Society, 2004, 126, 3097-3107.	13.7	94
102	Mixed Micelles Composed of Peptides and Gadolinium Complexes as Tumor-Specific Contrast Agents in MRI:  A SANS Study. Journal of Physical Chemistry B, 2004, 108, 17611-17617.	2.6	12
103	In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-B receptor imaging. Journal of Nuclear Medicine, 2004, 45, 485-94.	5.0	70
104	A Cyclic CCK8 Analogue Selective for the Cholecystokinin Type A Receptor: Design, Synthesis, NMR Structure and Binding Measurements. ChemBioChem, 2003, 4, 1176-1187.	2.6	14
105	CCK8 peptide derivatized with diphenylphosphine for rhenium labelling: synthesis and molecular mechanics calculations. Journal of Peptide Science, 2002, 8, 373-381.	1.4	12
106	Synthesis and solution characterization of a porphyrin-CCK8 conjugate. Journal of Peptide Science, 2001, 7, 386-394.	1.4	12