
Keqiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5167860/publications.pdf Version: 2024-02-01

KEOLANG WU

#	Article	IF	CITATIONS
1	The chromatin remodelling ATPase BRAHMA interacts with GATA-family transcription factor GNC to regulate flowering time in Arabidopsis. Journal of Experimental Botany, 2022, 73, 835-847.	4.8	9
2	WHIRLY1 recruits the histone deacetylase HDA15 repressing leaf senescence and flowering in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 1411-1429.	8.5	11
3	WRKY63 transcriptional activation of <i>COOLAIR</i> and <i>COLDAIR</i> regulates vernalization-induced flowering. Plant Physiology, 2022, 190, 532-547.	4.8	11
4	HISTONE DEACETYLASE 15 and MOS4-associated complex subunits 3A/3B coregulate intron retention of ABA-responsive genes. Plant Physiology, 2022, 190, 882-897.	4.8	10
5	The Arabidopsis histone demethylase JMJ28 regulates <i>CONSTANS</i> by interacting with FBH transcription factors. Plant Cell, 2021, 33, 1196-1211.	6.6	19
6	DNA Barcoding of St.ÂJohn's wort (Hypericum spp.) Growing Wild in North-Eastern Greece. Planta Medica, 2021, 87, 528-537.	1.3	0
7	The Transcriptional Adaptor Protein ADA3a Modulates Flowering of Arabidopsis thaliana. Cells, 2021, 10, 904.	4.1	3
8	Histone acetylation: a requirement for petunia floral scent. Journal of Experimental Botany, 2021, 72, 3493-3495.	4.8	2
9	Arabidopsis SUMO E3 Ligase SIZ1 Interacts with HDA6 and Negatively Regulates HDA6 Function during Flowering. Cells, 2021, 10, 3001.	4.1	2
10	MSI1 and HDA6 function interdependently to control flowering time via chromatin modifications. Plant Journal, 2021, , .	5.7	10
11	SWI3B and HDA6 interact and are required for transposon silencing in <i>Arabidopsis</i> . Plant Journal, 2020, 102, 809-822.	5.7	30
12	The expression of long non-coding RNAs is associated with H3Ac and H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex in Arabidopsis. NAR Genomics and Bioinformatics, 2020, 2, Iqaa066.	3.2	12
13	HDA6-dependent histone deacetylation regulates mRNA polyadenylation in <i>Arabidopsis</i> . Genome Research, 2020, 30, 1407-1417.	5.5	21
14	Dawsonite and ankerite formation in the LDX-1 structure, Yinggehai basin, South China sea: An analogy for carbon mineralization in subsurface sandstone aquifers. Applied Geochemistry, 2020, 120, 104663.	3.0	7
15	Structure of Arabidopsis HISTONE DEACETYLASE15. Plant Physiology, 2020, 184, 1585-1600.	4.8	13
16	The Effect of Low Temperature on Physiological, Biochemical and Flowering Functions of Olive Tree in Relation to Genotype. Sustainability, 2020, 12, 10065.	3.2	7
17	Histone demethylase SIJMJ6 promotes fruit ripening by removing H3K27 methylation of ripeningâ€related genes in tomato. New Phytologist, 2020, 227, 1138-1156.	7.3	66
18	Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene <i>GLABRA3</i> . Plant Journal, 2020, 103, 1735-1743.	5.7	32

#	Article	IF	CITATIONS
19	Identification and Characterization of Tomato SWI3-Like Proteins: Overexpression of SISWIC Increases the Leaf Size in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2019, 20, 5121.	4.1	7
20	Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. International Journal of Molecular Sciences, 2019, 20, 4591.	4.1	24
21	HY5 Interacts with the Histone Deacetylase HDA15 to Repress Hypocotyl Cell Elongation in Photomorphogenesis. Plant Physiology, 2019, 180, 1450-1466.	4.8	70
22	Construction of regional geoid using a virtual spherical harmonics model. Journal of Applied Geodesy, 2019, 13, 151-158.	1.1	3
23	The LDL1/2-HDA6 Histone Modification Complex Interacts With TOC1 and Regulates the Core Circadian Clock Components in Arabidopsis. Frontiers in Plant Science, 2019, 10, 233.	3.6	32
24	Identification and Expression Analysis of Snf2 Family Proteins in Tomato (<i>Solanum) Tj ETQq0 0 0 rgBT /Overlo</i>	ock 10 Tf 5	50 <u>5</u> 42 Td (lyc
25	Research on Two-dimensional Cutting Problem with Defects. , 2019, , .		2
26	Histone deacetylases HDA6 and HDA9 coordinately regulate valve cell elongation through affecting auxin signaling in Arabidopsis. Biochemical and Biophysical Research Communications, 2019, 508, 695-700.	2.1	22
27	The COMPASS-Like Complex Promotes Flowering and Panicle Branching in Rice. Plant Physiology, 2018, 176, 2761-2771.	4.8	43
28	Expression of hydroxytyrosol and oleuropein biosynthetic genes are correlated with metabolite accumulation during fruit development in olive, Olea europaea , cv. Koroneiki. Plant Physiology and Biochemistry, 2018, 128, 41-49.	5.8	25
29	Development of a New Type of Unmanned Transmission Line Inspection Airship. , 2018, , .		1
30	Grid Connected Photovoltaic Power Generation Station and it's Influence on Dispatching Operation Mode. , 2018, , .		2
31	The Plant Circadian Clock and Chromatin Modifications. Genes, 2018, 9, 561.	2.4	8
32	The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis. Planta, 2018, 248, 613-628.	3.2	25
33	Synergistic action of <i>GCN5</i> and <i>CLAVATA1</i> in the regulation of gynoecium development in <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 220, 593-608.	7.3	29
34	The Arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes. Nucleic Acids Research, 2018, 46, 10669-10681.	14.5	52
35	A SUMO Ligase AtMMS21 Regulates the Stability of the Chromatin Remodeler BRAHMA in Root Development. Plant Physiology, 2017, 173, 1574-1582.	4.8	34
36	Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Research, 2017, 45, 7137-7150.	14.5	89

#	Article	IF	CITATIONS
37	Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases. Plant Physiology, 2017, 173, 1434-1452.	4.8	114
38	The transcriptional regulatory network mediated by banana (<i>Musa acuminata</i>) dehydrationâ€responsive element binding (MaDREB) transcription factors in fruit ripening. New Phytologist, 2017, 214, 762-781.	7.3	68
39	Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis. Nature Plants, 2017, 3, 814-824.	9.3	85
40	HISTONE DEACETYLASE6 Acts in Concert with Histone Methyltransferases SUVH4, SUVH5, and SUVH6 to Regulate Transposon Silencing. Plant Cell, 2017, 29, 1970-1983.	6.6	72
41	Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation. Molecular Plant, 2017, 10, 260-273.	8.3	77
42	Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. Frontiers in Plant Science, 2017, 8, 2147.	3.6	112
43	Genome-Wide Analysis of Gene Regulatory Networks of the FVE-HDA6-FLD Complex in Arabidopsis. Frontiers in Plant Science, 2016, 7, 555.	3.6	37
44	Histone Acetylation and Plant Development. The Enzymes, 2016, 40, 173-199.	1.7	28
45	Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nature Genetics, 2016, 48, 687-693.	21.4	193
46	Banana Transcription Factor MaERF11 Recruits Histone Deacetylase MaHDA1 and Represses the Expression of MaACO1 and Expansins during Fruit Ripening. Plant Physiology, 2016, 171, pp.00301.2016.	4.8	157
47	Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 905-918.	4.8	20
48	Adropin induction of lipoprotein lipase expression in tilapia hepatocytes. Journal of Molecular Endocrinology, 2016, 56, 11-22.	2.5	17
49	The histone deacetylase HDA19 controls root cell elongation and modulates a subset of phosphate starvation responses in Arabidopsis. Scientific Reports, 2015, 5, 15708.	3.3	55
50	Regulation of flowering time by the histone deacetylase <scp>HDA</scp> 5 in <scp>A</scp> rabidopsis. Plant Journal, 2015, 82, 925-936.	5.7	94
51	The Arabidopsis SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Targets Directly to <i>PINs</i> and Is Required for Root Stem Cell Niche Maintenance. Plant Cell, 2015, 27, 1670-1680.	6.6	88
52	Role of Epigenetic Modifications in Plant Responses to Environmental Stresses. , 2015, , 81-92.		4
53	Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Frontiers in Plant Science, 2015, 6, 159.	3.6	66
54	Arabidopsis BREVIPEDICELLUS Interacts with the SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA to Regulate KNAT2 and KNAT6 Expression in Control of Inflorescence Architecture. PLoS Genetics, 2015, 11, e1005125.	3.5	73

#	Article	IF	CITATIONS
55	The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP. PLoS Genetics, 2015, 11, e1004944.	3.5	111
56	Histone Lysine Demethylases and Their Functions in Plants. Plant Molecular Biology Reporter, 2014, 32, 558-565.	1.8	31
57	Transcriptional Repression by Histone Deacetylases in Plants. Molecular Plant, 2014, 7, 764-772.	8.3	231
58	Environmental History Modulates <i>Arabidopsis</i> Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1–Dependent Manner Â. Plant Cell, 2014, 26, 2676-2688.	6.6	133
59	Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum). Frontiers in Plant Science, 2014, 5, 760.	3.6	58
60	Histone Acetylation Accompanied with Promoter Sequences Displaying Differential Expression Profiles of B-Class MADS-Box Genes for Phalaenopsis Floral Morphogenesis. PLoS ONE, 2014, 9, e106033.	2.5	24
61	Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MalCE1 in methyl jasmonateâ€induced chilling tolerance in banana fruit. Plant, Cell and Environment, 2013, 36, 30-51.	5.7	198
62	PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated <i>Arabidopsis</i> Seedlings Â. Plant Cell, 2013, 25, 1258-1273.	6.6	186
63	HISTONE DEACETYLASE19 Interacts with HSL1 and Participates in the Repression of Seed Maturation Genes in <i>Arabidopsis</i> Seedlings Â. Plant Cell, 2013, 25, 134-148.	6.6	157
64	Involvement of Histone Modifications in Plant Abiotic Stress Responses. Journal of Integrative Plant Biology, 2013, 55, 892-901.	8.5	133
65	Histone Deacetylase HDA6 Is Functionally Associated with AS1 in Repression of KNOX Genes in Arabidopsis. PLoS Genetics, 2012, 8, e1003114.	3.5	93
66	HD2 proteins interact with RPD3-type histone deacetylases. Plant Signaling and Behavior, 2012, 7, 608-610.	2.4	29
67	HDA6 Directly Interacts with DNA Methyltransferase MET1 and Maintains Transposable Element Silencing in Arabidopsis Â. Plant Physiology, 2012, 158, 119-129.	4.8	141
68	Epigenetic interplay of histone modifications and DNA methylation mediated by HDA6. Plant Signaling and Behavior, 2012, 7, 633-635.	2.4	28
69	Histone deacetylase HD2 interacts with ERF1 and is involved in longan fruit senescence. Journal of Experimental Botany, 2012, 63, 441-454.	4.8	83
70	Comparative Analysis of SWIRM Domain-Containing Proteins in Plants. Comparative and Functional Genomics, 2012, 2012, 1-8.	2.0	9
71	HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. Journal of Experimental Botany, 2012, 63, 3297-3306.	4.8	255
72	Quantitative DNA methylation and recurrence of breast cancer: A study of 30 candidate genes. Cancer Biomarkers, 2012, 11, 75-88.	1.7	14

#	Article	IF	CITATIONS
73	The Arabidopsis ortholog of the YEATS domain containing protein YAF9a regulates flowering by controlling H4 acetylation levels at the FLC locus. Plant Science, 2012, 196, 44-52.	3.6	26
74	Chromatin modifications and remodeling in plant abiotic stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 129-136.	1.9	176
75	Histone acetyltransferases in rice (Oryza sativaL.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biology, 2012, 12, 145.	3.6	91
76	Subcellular Localization of Class II HDAs in Arabidopsis thaliana: Nucleocytoplasmic Shuttling of HDA15 Is Driven by Light. PLoS ONE, 2012, 7, e30846.	2.5	55
77	Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. Journal of Experimental Botany, 2012, 63, 4107-4121.	4.8	93
78	Arabidopsis thaliana TBP-associated factor 5 is essential for plant growth and development. Molecular Breeding, 2012, 30, 355-366.	2.1	16
79	Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta, 2012, 235, 1271-1288.	3.2	70
80	Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiology and Biochemistry, 2012, 50, 79-86.	5.8	47
81	Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Reports, 2012, 31, 67-79.	5.6	175
82	NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Reports, 2012, 31, 379-389.	5.6	56
83	Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis. Planta, 2012, 235, 523-537.	3.2	64
84	Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta, 2011, 233, 749-762.	3.2	75
85	HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and Regulates Flowering in Arabidopsis Â. Plant Physiology, 2011, 156, 173-184.	4.8	199
86	The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses. Plant Signaling and Behavior, 2011, 6, 1475-1478.	2.4	15
87	Epigenetic regulation of peanut allergen gene Ara h 3 in developing embryos. Planta, 2010, 231, 1049-1060.	3.2	17
88	Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany, 2010, 61, 3345-3353.	4.8	294
89	Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signaling and Behavior, 2010, 5, 1318-1320.	2.4	192
90	Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity. Biochemical and Biophysical Research Communications, 2010, 396, 187-192.	2.1	55

#	Article	IF	CITATIONS
91	Regulation of oleosin expression in developing peanut (Arachis hypogaea L.) embryos through nucleosome loss and histone modifications. Journal of Experimental Botany, 2009, 60, 4371-4382.	4.8	19
92	Advanced Glycation End Product (AGE) Accumulation on Bruch's Membrane: Links to Age-Related RPE Dysfunction. , 2009, 50, 441.		80
93	Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biology, 2009, 9, 37.	3.6	117
94	The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis. Planta, 2009, 230, 1207-1221.	3.2	36
95	The Expression of Manganese Superoxide Dismutase Gene from <i>Nelumbo nucifera</i> Responds Strongly to Chilling and Oxidative Stresses. Journal of Integrative Plant Biology, 2009, 51, 279-286.	8.5	15
96	Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 117-124.	1.9	49
97	Research progresses on GH3s, one family of primary auxin-responsive genes. Plant Growth Regulation, 2008, 56, 225-232.	3.4	48
98	Creation and analysis of a novel chimeric promoter for the complete containment of pollen- and seed-mediated gene flow. Plant Cell Reports, 2008, 27, 995-1004.	5.6	21
99	Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey. Biotechnology Letters, 2008, 30, 1861-1866.	2.2	26
100	Gene expression analysis of germinating rice seeds responding to high hydrostatic pressure. Journal of Plant Physiology, 2008, 165, 1855-1864.	3.5	21
101	ISSR analysis of genetic diversity in sacred lotus cultivars. Aquatic Botany, 2008, 89, 311-316.	1.6	38
102	HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. Journal of Experimental Botany, 2008, 59, 225-234.	4.8	298
103	Sequence and expression analysis of histone deacetylases in rice. Biochemical and Biophysical Research Communications, 2007, 356, 843-850.	2.1	108
104	DJ: A Transparent Java-Integrated Data Access System. , 2007, , .		0
105	An adaptive dual control framework for QoS design. Cluster Computing, 2007, 10, 217-228.	5.0	1
106	Repression of Plant Gene Expression via Chromosomal Remodelling Using Histone Deacetylases. , 2007, , 125-128.		0
107	Identification ofAtHD2Cas a novel regulator of abscisic acid responses in Arabidopsis. Plant Journal, 2006, 46, 124-133.	5.7	265
108	Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions. FASEB Journal, 2006, 20, A1343.	0.5	0

#	Article	IF	CITATIONS
109	HISTONE DEACETYLASE19 Is Involved in Jasmonic Acid and Ethylene Signaling of Pathogen Response in Arabidopsis. Plant Cell, 2005, 17, 1196-1204.	6.6	407
110	Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology, 2005, 58, 585-596.	3.9	310
111	Analysis and use of the tobacco elF4A-10 promoter elements for transgene expression. Journal of Plant Physiology, 2005, 162, 1355-1366.	3.5	3
112	Isolation of peanut genes encoding arachins and conglutins by expressed sequence tags. Plant Science, 2005, 169, 439-445.	3.6	36
113	Expression and function of HD2-type histone deacetylases inArabidopsisdevelopment. Plant Journal, 2004, 38, 715-724.	5.7	124
114	CHB2, a member of theSWI3gene family, is a global regulator inArabidopsis. Plant Molecular Biology, 2003, 52, 1125-1134.	3.9	32
115	The cryptic enhancer elements of the tCUP promoter. Plant Molecular Biology, 2003, 51, 351-362.	3.9	14
116	Repression of gene expression by Arabidopsis HD2 histone deacetylases. Plant Journal, 2003, 34, 241-247.	5.7	70
117	Activity of elements from the tobacco cryptic promoter, tCUP, in conifer tissues. In Vitro Cellular and Developmental Biology - Plant, 2003, 39, 193-202.	2.1	7
118	Disruption Mutations of ADA2b and GCN5 Transcriptional Adaptor Genes Dramatically Affect Arabidopsis Growth, Development, and Gene Expression[W]. Plant Cell, 2003, 15, 626-638.	6.6	288
119	Control of Gene Expression by Histone Deacetylases. , 2003, , 211-214.		0
120	Functional Analysis of Tomato <i>Pti4</i> in Arabidopsis,. Plant Physiology, 2002, 128, 30-37.	4.8	84
121	Functional Analysis of Tomato Pti4 in Arabidopsis. Plant Physiology, 2002, 128, 30-37.	4.8	11
122	Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiology, 2002, 128, 30-7.	4.8	29
123	Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Research, 2001, 29, 2181-2190.	14.5	87
124	Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. Plant Journal, 2000, 22, 19-27.	5.7	160
125	Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. Plant Molecular Biology, 2000, 44, 167-176.	3.9	99
126	Molecular Cloning and Photoperiod-Regulated Expression of Gibberellin 20-Oxidase from the Long-Day Plant Spinach. Plant Physiology, 1996, 110, 547-554.	4.8	134

#	Article	IF	CITATIONS
127	The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6640-6644.	7.1	294
128	A valine-resistant mutant ofArabidopsis thaliana displays an acetolactate synthase with altered feedback control. Planta, 1994, 192, 249-255.	3.2	26