Daniel P Kiehart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5167462/publications.pdf

Version: 2024-02-01

34 papers

4,577 citations

331259 21 h-index 395343 33 g-index

34 all docs

34 docs citations

34 times ranked 5642 citing authors

#	Article	IF	Citations
1	Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346, 1257998.	6.0	1,567
2	Multiple Forces Contribute to Cell Sheet Morphogenesis for Dorsal Closure in Drosophila. Journal of Cell Biology, 2000, 149, 471-490.	2.3	605
3	Forces for Morphogenesis Investigated with Laser Microsurgery and Quantitative Modeling. Science, 2003, 300, 145-149.	6.0	469
4	Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell, 2018, 175, 1430-1442.e17.	13.5	427
5	Apoptotic Force and Tissue Dynamics During <i>Drosophila</i> Embryogenesis. Science, 2008, 321, 1683-1686.	6.0	251
6	Nonmuscle Myosin II Generates Forces that Transmit Tension and Drive Contraction in Multiple Tissues during Dorsal Closure. Current Biology, 2005, 15, 2208-2221.	1.8	247
7	Tension Creates an Endoreplication Wavefront that Leads Regeneration of Epicardial Tissue. Developmental Cell, 2017, 42, 600-615.e4.	3.1	103
8	MRCK-1 Drives Apical Constriction in C.Âelegans by Linking Developmental Patterning to Force Generation. Current Biology, 2016, 26, 2079-2089.	1.8	96
9	Dual labeling of the fibronectin matrix and actin cytoskeleton with green fluorescent protein variants. Journal of Cell Science, 2002, 115, 1221-1229.	1.2	92
10	Real-time imaging of morphogenetic movements indrosophila using Gal4-UAS-driven expression of GFP fused to the actin-binding domain of moesin. Genesis, 2002, 34, 146-151.	0.8	80
11	Cell Sheet Morphogenesis: Dorsal Closure in <i>Drosophila melanogaster</i> as a Model System. Annual Review of Cell and Developmental Biology, 2017, 33, 169-202.	4.0	77
12	Cell Ingression and Apical Shape Oscillations during Dorsal Closure in Drosophila. Biophysical Journal, 2012, 102, 969-979.	0.2	67
13	JNK signaling coordinates integrin and actin functions duringDrosophilaembryogenesis. Developmental Dynamics, 2006, 235, 427-434.	0.8	66
14	Actomyosin purse strings: Renewable resources that make morphogenesis robust and resilient. HFSP Journal, 2008, 2, 220-237.	2.5	65
15	Drosophila crinkled, Mutations of Which Disrupt Morphogenesis and Cause Lethality, Encodes Fly Myosin VIIA. Genetics, 2004, 168, 1337-1352.	1.2	60
16	Ion channels contribute to the regulation of cell sheet forces during <i>Drosophila</i> dorsal closure. Development (Cambridge), 2014, 141, 325-334.	1.2	55
17	Chapter 26 High-Resolution Microscopic Methods for the Analysis of Cellular Movements in Drosophila Embryos. Methods in Cell Biology, 1994, 44, 507-532.	0.5	47
18	Second-Site Noncomplementation Identifies Genomic Regions Required for Drosophila Nonmuscle Myosin Function During Morphogenesis. Genetics, 1998, 148, 1845-1863.	1.2	42

#	Article	IF	Citations
19	Complete canthi removal reveals that forces from the amnioserosa alone are sufficient to drive dorsal closure in <i>Drosophila</i> . Molecular Biology of the Cell, 2014, 25, 3552-3568.	0.9	39
20	Native nonmuscle myosin II stability and light chain binding inDrosophila melanogaster. Cytoskeleton, 2006, 63, 604-622.	4.4	36
21	<i>Drosophila</i> morphogenesis: Tissue force laws and the modeling of dorsal closure. HFSP Journal, 2009, 3, 441-460.	2.5	28
22	Protein Kinase C Phosphorylates Nonmuscle Myosin-II Heavy Chain from Drosophila but Regulation of Myosin Function by This Enzyme Is Not Required for Viability in Fliesâ€. Biochemistry, 2001, 40, 3606-3614.	1.2	11
23	Remodeling Tissue Interfaces and the Thermodynamics of Zipping during Dorsal Closure in Drosophila. Biophysical Journal, 2015, 109, 2406-2417.	0.2	11
24	Epithelial Morphogenesis: Apoptotic Forces Drive Cell Shape Changes. Developmental Cell, 2015, 32, 532-533.	3.1	6
25	Quantifying dorsal closure in three dimensions. Molecular Biology of the Cell, 2016, 27, 3948-3955.	0.9	6
26	Actin Dynamics: The Arp2/3 Complex Branches Out. Current Biology, 2002, 12, R557-R559.	1.8	5
27	Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3: Genes, Genomes, Genetics, 2018, 8, 2361-2387.	0.8	5
28	Moving Inward: Establishing the Mammalian Inner Cell Mass. Developmental Cell, 2015, 34, 385-386.	3.1	3
29	Unified biophysical mechanism for cell-shape oscillations and cell ingression. Physical Review E, 2018, 97, 062414.	0.8	3
30	Mutations in Drosophila crinkled/Myosin VIIA disrupt denticle morphogenesis. Developmental Biology, 2021, 470, 121-135.	0.9	3
31	Identifying Key Genetic Regions for Cell Sheet Morphogenesis on Chromosome 2L Using a <i>Drosophila</i> Deficiency Screen in Dorsal Closure. G3: Genes, Genomes, Genetics, 2020, 10, 4249-4269.	0.8	2
32	Superresolution microscopy reveals actomyosin dynamics in medioapical arrays. Molecular Biology of the Cell, 2022, 33, mbcE21110537.	0.9	2
33	Myosins Motor Miranda. Molecular Cell, 2003, 12, 1346-1347.	4.5	1
34	Contractile protein biochemistry in the Pollard Lab in Baltimore. Biophysical Reviews, 2018, 10, 1483-1485.	1.5	0