
ArÃ;nzazu DÃ-az-Cuenca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5167410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible calcium phosphate-based ceramics and composites. Materials Today: Proceedings, 2022, 61, 1217-1225.	0.9	8
2	Mesoporous Silica-Based Nanoparticles as Non-Viral Gene Delivery Platform for Treating Retinitis Pigmentosa. Journal of Clinical Medicine, 2022, 11, 2170.	1.0	8
3	Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. Materials Science and Engineering C, 2021, 120, 111679.	3.8	6
4	Nanofibrous Gelatin-Based Biomaterial with Improved Biomimicry Using D-Periodic Self-Assembled Atelocollagen. Biomimetics, 2021, 6, 20.	1.5	5
5	Nanofibrous Matrix of Defined Composition Sustains Human Induced Pluripotent Stem Cell Culture. ACS Applied Bio Materials, 2021, 4, 3035-3040.	2.3	1
6	A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response. Materials, 2020, 13, 1641.	1.3	8
7	MTA HP Repair stimulates in vitro an homogeneous calcium phosphate phase coating deposition. Journal of Clinical and Experimental Dentistry, 2019, 11, 0-0.	0.5	7
8	Higher hydration performance and bioactive response of the new endodontic bioactive cement MTA HP repair compared with ProRoot MTA white and NeoMTA plus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2109-2120.	1.6	22
9	Physicochemical parameters - hydration performance relationship of the new endodontic cement MTA Repair HP. Journal of Clinical and Experimental Dentistry, 2019, 11, e739-e744.	0.5	12
10	Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model. Acta Biomaterialia, 2018, 68, 272-285.	4.1	76
11	Nanostructured hybrid device mimicking bone extracellular matrix as local and sustained antibiotic delivery system. Microporous and Mesoporous Materials, 2018, 256, 165-176.	2.2	14
12	High surface area biopolymeric-ceramic scaffolds for hard tissue engineering. Biomedical Physics and Engineering Express, 2017, 3, 035012.	0.6	13
13	Regenerative Endodontic Procedures: A Perspective from Stem Cell Niche Biology. Journal of Endodontics, 2017, 43, 52-62.	1.4	24
14	InÂvitro stimulation of MC3T3-E1cells and sustained drug delivery by a hierarchical nanostructured SiO2CaO P2O5 scaffold. Microporous and Mesoporous Materials, 2016, 229, 31-43.	2.2	10
15	Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: Nanostructured surfaces and porosity. Journal of Biomedical Materials Research - Part A, 2014, 102, 2982-2992.	2.1	20
16	Fabrication of Gelatin/Bioactive Glass Hybrid Scaffolds for Bone Tissue-Engineering. IFMBE Proceedings, 2014, , 1630-1633.	0.2	2
17	Light induced hydrophilicity and osteoblast adhesion promotion on amorphous TiO ₂ . Journal of Biomedical Materials Research - Part A, 2013, 101A, 1026-1035.	2.1	19
18	Tuning of Cell–Biomaterial Anchorage for Tissue Regeneration. Advanced Materials, 2013, 25, 4049-4057.	11.1	62

ARÃinzazu DÃaz-Cuenca

#	Article	IF	CITATIONS
19	Nanoporous silica microparticle interaction with toll-like receptor agonists in macrophages. Acta Biomaterialia, 2012, 8, 4295-4303.	4.1	23
20	Tuning liver stiffness against tumours: An in vitro study using entrapped cells in tumour-like microcapsules. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 113-121.	1.5	27
21	Determination of pore size distribution at the cell-hydrogel interface. Journal of Nanobiotechnology, 2011, 9, 24.	4.2	52
22	Determination of the decay rate constant for hepatocytes immobilized in alginate microcapsules. Journal of Microencapsulation, 2010, 27, 86-93.	1.2	7
23	Growth of hydroxyapatite in a biocompatible mesoporous ordered silica. Acta Biomaterialia, 2006, 2, 173-179.	4.1	81
24	Comparison of Mechanical Properties of Silicon Nitrides with Controlled Porosities Produced by Different Fabrication Routes. Journal of the American Ceramic Society, 2005, 88, 698-706.	1.9	65
25	Characterisation of porous silicon nitride materials produced with starch. Journal of the European Ceramic Society, 2004, 24, 413-419.	2.8	189
26	Crystallisation of M-SiAlON glasses to I w -phase glass-ceramics: preparation and characterisation. Journal of Materials Science, 2002, 37, 723-730.	1.7	6
27	Sub-scalar reactions during oxidation of Iw-phase SiAlON glass–ceramics under a very low oxygen partial pressure. Journal of the European Ceramic Society, 2001, 21, 2161-2170.	2.8	1
28	The formation of domain boundaries in the Iwphase of Y-Si-Al-O-N and Er-Si-Al-O-N. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 867-882.	0.7	3
29	CO2 adsorption and surface basicity evaluation of aluminophosphate oxynitride (AlPON) catalysts. Catalysis Letters, 1998, 54, 159-164.	1.4	18
30	Influence of alkali additives on activity and toxicity of H2S and thiophene over a Ni/SiO2 catalyst. Applied Catalysis A: General, 1998, 166, 163-172.	2.2	11
31	Characterization of Alkali-Doped Ni/SiO2 Catalysts. Journal of Physical Chemistry B, 1997, 101, 1782-1790.	1.2	29
32	Influence of the Nickel Reduction Degree on the Toxicity of H2S and Thiophene over a Ni/SiO2Catalyst. Journal of Catalysis, 1996, 162, 349-358.	3.1	6
33	Thiophene hydrogenolysis using temperature-programmed surface reaction as a tool to study poison toxicity. Applied Catalysis A: General, 1995, 132, L1-L7.	2.2	1
34	Selectivity in the High-Temperature Hydrogenation of Acetone with Silica-Supported Nickel and Cobalt Catalysts. Journal of Catalysis, 1995, 157, 461-471.	3.1	37
35	Characterization of the microporosity of pillared clays by nitrogen adsorption — application of the Horvath-Kawazoe approach. Journal of Materials Science, 1994, 29, 4927-4932.	1.7	24
36	Influence of the preparation method and the nature of the support on the stability of nickel catalysts. Applied Catalysis A: General, 1994, 109, 167-179.	2.2	110

#	Article	IF	CITATIONS
37	Passivation and reactivation of nickel catalysts. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 791.	1.7	17