Taichi Okuda

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5167385/taichi-okuda-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166
papers5,248
citations37
h-index67
g-index179
ext. papers6,098
ext. citations5.1
avg, IF5.02
L-index

#	Paper	IF	Citations
166	Profiling spin and orbital texture of a topological insulator in full momentum space. <i>Physical Review B</i> , 2021 , 103,	3.3	2
165	Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions. <i>Nature Communications</i> , 2021 , 12, 2542	17.4	4
164	Experimental Observation and Spin Texture of Dirac Node Arcs in Tetradymite Topological Metals. <i>Physical Review Letters</i> , 2021 , 126, 196407	7.4	O
163	Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4. <i>Physical Review B</i> , 2021 , 103,	3.3	7
162	Kagome-like structure of germanene on Al(111). <i>Physical Review B</i> , 2021 , 104,	3.3	3
161	Observation of Spin-Momentum-Layer Locking in a Centrosymmetric Crystal. <i>Physical Review Letters</i> , 2021 , 127, 126402	7.4	3
160	Persistence of the Topological Surface States in Bi2Se3 against Ag Intercalation at Room Temperature. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 1784-1792	3.8	O
159	Switching of band inversion and topological surface states by charge density wave. <i>Nature Communications</i> , 2020 , 11, 2466	17.4	8
158	Cubic Rashba Effect in the Surface Spin Structure of Rare-Earth Ternary Materials. <i>Physical Review Letters</i> , 2020 , 124, 237202	7.4	11
157	Radial Spin Texture in Elemental Tellurium with Chiral Crystal Structure. <i>Physical Review Letters</i> , 2020 , 124, 136404	7.4	27
156	Topologically Nontrivial Phase-Change Compound GeSbTe. <i>ACS Nano</i> , 2020 , 14, 9059-9065	16.7	3
155	Spectroscopic evidence of quasi-one-dimensional metallic Rashba spin-split states on the Si(111)5🛘 -Au surface. <i>Physical Review B</i> , 2020 , 101,	3.3	2
154	Distinct Topological Surface States on the Two Terminations of MnBi4Te7. <i>Physical Review X</i> , 2020 , 10,	9.1	23
153	Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. <i>Nature Communications</i> , 2020 , 11, 4821	17.4	19
152	Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator [Formula: see text]. <i>Scientific Reports</i> , 2020 , 10, 13226	4.9	23
151	Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2. <i>Physical Review B</i> , 2020 , 102,	3.3	1
150	Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films. <i>Communications Materials</i> , 2020 , 1,	6	21

149	Discovery of Weyl Nodal Lines in a Single-Layer Ferromagnet. <i>Physical Review Letters</i> , 2019 , 123, 11640	17.4	37
148	Non-trivial surface states of samarium hexaboride at the (111) surface. <i>Nature Communications</i> , 2019 , 10, 2298	17.4	8
147	Crossover from 2D metal to 3D Dirac semimetal in metallic PtTe2 films with local Rashba effect. <i>Science Bulletin</i> , 2019 , 64, 1044-1048	10.6	29
146	Electronic properties of candidate type-II Weyl semimetal WTe 2 . A review perspective. <i>Electronic Structure</i> , 2019 , 1, 014003	2.6	14
145	A general route to form topologically-protected surface and bulk Dirac fermions along high-symmetry lines. <i>Electronic Structure</i> , 2019 , 1, 014002	2.6	6
144	Disentangling orbital and spin textures of surface-derived states in non-symmorphic semimetal HfSiS. <i>Physical Review B</i> , 2019 , 100,	3.3	4
143	Weyl-like points from band inversions of spin-polarised surface states in NbGeSb. <i>Nature Communications</i> , 2019 , 10, 5485	17.4	4
142	Multiple topological states in iron-based superconductors. <i>Nature Physics</i> , 2019 , 15, 41-47	16.2	96
141	Peculiar Rashba spin texture induced by C3v symmetry on the Bi(111) surface revisited. <i>Physical Review B</i> , 2018 , 97,	3.3	4
140	Location of the valence band maximum in the band structure of anisotropic 1T? R eSe2. <i>Physical Review B</i> , 2018 , 97,	3.3	6
139	Experimental observation of node-line-like surface states in LaBi. <i>Physical Review B</i> , 2018 , 97,	3.3	9
138	Circular-polarized-light-induced spin polarization characterized for the Dirac-cone surface state at W(110) with C symmetry. <i>Scientific Reports</i> , 2018 , 8, 10440	4.9	7
137	Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi2Te2S. <i>Physical Review B</i> , 2018 , 97,	3.3	11
136	Enhanced surface state protection and band gap in the topological insulator PbBi4Te4S3. <i>Physical Review Materials</i> , 2018 , 2,	3.2	4
135	Spin- and Angle-Resolved Photoelectron Spectroscopy 2018 , 623-629		
134	Discovery of 2D Anisotropic Dirac Cones. <i>Advanced Materials</i> , 2018 , 30, 1704025	24	62
133	Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe film. <i>Nature Communications</i> , 2017 , 8, 14216	17.4	110
132	Adsorbate doping of MoS and WSe: the influence of Na and Co. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 285501	1.8	9

131	Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer. <i>Nano Letters</i> , 2017 , 17, 3493-3500	11.5	93
130	Experimental realization of two-dimensional Dirac nodal line fermions in monolayer CuSi. <i>Nature Communications</i> , 2017 , 8, 1007	17.4	138
129	Direct evidence of hidden local spin polarization in a centrosymmetric superconductor LaO FBiS. <i>Nature Communications</i> , 2017 , 8, 1919	17.4	29
128	High quality atomically thin PtSe 2 films grown by molecular beam epitaxy. 2D Materials, 2017, 4, 04501	5.9	113
127	Recent trends in spin-resolved photoelectron spectroscopy. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 483001	1.8	15
126	Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe4. <i>Physical Review B</i> , 2017 , 95,	3.3	68
125	Exchange coupling and spin structure in cobalt-on-chromia thin films. <i>Europhysics Letters</i> , 2016 , 115, 17003	1.6	5
124	Orbital-symmetry-selective spin characterization of Dirac-cone-like state on W(110). <i>Physical Review B</i> , 2016 , 93,	3.3	25
123	Photoelectron spin polarization in the Bi2Te3(0001) topological insulator: Initial- and final-state effects in the photoemission process. <i>Physical Review B</i> , 2016 , 93,	3.3	10
122	Surface Kondo effect and non-trivial metallic state of the Kondo insulator YbB12. <i>Nature Communications</i> , 2016 , 7, 12690	17.4	26
121	Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2. <i>Nature Communications</i> , 2016 , 7, 10847	17.4	75
120	Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd. <i>Nature Communications</i> , 2016 , 7, 13315	17.4	33
119	Hidden Rashba spin-split states in a quasi-one-dimensional Au atomic chain on ferromagnetic Ni(110). <i>Physical Review B</i> , 2016 , 94,	3.3	1
118	Spin polarization of surface states on W(1 1 0): Combined influence of spinBrbit interaction and hybridization. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2015 , 201, 53-59	1.7	14
117	A double VLEED spin detector for high-resolution three dimensional spin vectorial analysis of anisotropic Rashba spin splitting. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2015 , 201, 23-29	1.7	33
116	Tunable spin current due to bulk insulating property in the topological insulator Tl1⊠Bi1+xSe2□ <i>Physical Review B</i> , 2015 , 91,	3.3	12
115	Lifshitz transition and Van Hove singularity in a three-dimensional topological Dirac semimetal. <i>Physical Review B</i> , 2015 , 92,	3.3	28
114	Tunable spin helical Dirac quasiparticles on the surface of three-dimensional HgTe. <i>Physical Review B</i> , 2015 , 92,	3.3	16

113	Spin-orbit influence on dz2-type surface state at Ta(110). <i>Physical Review B</i> , 2015 , 92,	3.3	4
112	Topologically protected surface states in a centrosymmetric superconductor & BdBi2. <i>Nature Communications</i> , 2015 , 6, 8595	17.4	81
111	Photoelectron spin-polarization control in the topological insulator Bi2Se3. <i>Physical Review Letters</i> , 2014 , 112, 076802	7.4	74
110	Reflectivity and Sherman Maps of Passivated Fe(001): Working Points for a Display-Type Spin-Polarization Analyzer. <i>Physical Review Applied</i> , 2014 , 1,	4.3	12
109	Spin-Polarized Angle-Resolved Photoelectron Spectroscopy of the So-Predicted Kondo Topological Insulator SmB6. <i>Journal of the Physical Society of Japan</i> , 2014 , 83, 014705	1.5	24
108	Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. <i>Nature Nanotechnology</i> , 2014 , 9, 611-7	28.7	306
107	The gigantic Rashba effect of surface states energetically buried in the topological insulator Bi2Te2Se. <i>New Journal of Physics</i> , 2014 , 16, 065016	2.9	10
106	Titanium-induced charge of Si(0 0 1) surface dependent on local configuration. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2014 , 192, 35-39	1.7	O
105	Exceptional behavior of d-like surface resonances on W(110): the one-step model in its density matrix formulation. <i>New Journal of Physics</i> , 2014 , 16, 015005	2.9	44
104	Direct observation of the spin polarization in Au atomic wires on Si(553). <i>New Journal of Physics</i> , 2014 , 16, 093030	2.9	16
103	Anisotropic electronic conduction in metal nanofilms grown on a one-dimensional surface superstructure. <i>Physical Review B</i> , 2014 , 89,	3.3	6
102	Unoccupied topological surface state in Bi2Te2Se. <i>Physical Review B</i> , 2013 , 88,	3.3	19
101	Experimental evidence of hidden topological surface states in PbBi4Te7. <i>Physical Review Letters</i> , 2013 , 111, 206803	7.4	33
100	Electronic and spin structures of solids investigated by means of synchrotron radiation photoemission. <i>Radiation Physics and Chemistry</i> , 2013 , 93, 14-20	2.5	O
99	Perpendicular magnetic anisotropy with enhanced orbital moments of Fe adatoms on a topological surface of Bi2Se3. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 232201	1.8	9
98	Quasi-Periodic Variably Polarizing Undulator at HiSOR. <i>Journal of Physics: Conference Series</i> , 2013 , 425, 032009	0.3	3
97	Experimental verification of the surface termination in the topological insulator TlBiSe2 using core-level photoelectron spectroscopy and scanning tunneling microscopy. <i>Physical Review B</i> , 2013 , 88,	3.3	19
96	Tuning of magnetic and transport properties in Bi2Te3 by divalent Fe doping. <i>Physical Review B</i> , 2013 , 87,	3.3	21

95	Spin- and Angle-Resolved Photoemission of Strongly Spin Drbit Coupled Systems. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 021002	1.5	45
94	Observation of Micro-Magnetic Structures by Synchrotron Radiation Photoelectron Emission Microscopy. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 021005	1.5	9
93	High-Efficient Spin- and Angle-Resolved Photoemission Spectroscopy for Bi2Te2Se and Bi2Se2Te. <i>Hyomen Kagaku</i> , 2013 , 34, 374-379		
92	Development and application of multiple-probe scanning probe microscopes. <i>Advanced Materials</i> , 2012 , 24, 1675-92	24	47
91	Observation of a highly spin-polarized topological surface state in GeBi2Te4. <i>Physical Review B</i> , 2012 , 86,	3.3	37
90	Topological surface states with persistent high spin polarization across the Dirac point in Bi2Te2Se and Bi2Se2Te. <i>Physical Review Letters</i> , 2012 , 109, 166802	7.4	77
89	Quasiparticle interference on the surface of Bi2Se3 induced by cobalt adatom in the absence of ferromagnetic ordering. <i>Physical Review B</i> , 2012 , 85,	3.3	54
88	Status of pump-probe time-resolved photoemission electron microscopy at SPring-8. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2012 , 185, 389-394	1.7	9
87	Experimental verification of PbBi2Te4 as a 3D topological insulator. <i>Physical Review Letters</i> , 2012 , 108, 206803	7.4	69
86	Three-dimensional spin orientation in antiferromagnetic domain walls of NiO studied by x-ray magnetic linear dichroism photoemission electron microscopy. <i>Physical Review B</i> , 2012 , 85,	3.3	30
85	Direct observation of twin domains of NiO(100) by x-ray linear dichroism at the O K edge using photoemission electron microscopy. <i>Physical Review B</i> , 2012 , 85,	3.3	4
84	Massless or heavy due to two-fold symmetry: Surface-state electrons at W(110). <i>Physical Review B</i> , 2012 , 86,	3.3	38
83	Negative spin polarization at the Fermi level in Fe4N epitaxial films by spin-resolved photoelectron spectroscopy. <i>Journal of Applied Physics</i> , 2012 , 112, 013911	2.5	25
82	Spin-polarized Dirac-cone-like surface state with d character at W(110). <i>Physical Review Letters</i> , 2012 , 108, 066808	7.4	7 ²
81	Observation of Peculiar Rashba-Type Spin-Split Band on Bi(111) Surface by High-Resolution Spin- and Angle-Resolved Photoemission Spectroscopy. <i>E-Journal of Surface Science and Nanotechnology</i> , 2012 , 10, 153-156	0.7	10
80	Efficient spin resolved spectroscopy observation machine at Hiroshima Synchrotron Radiation Center. <i>Review of Scientific Instruments</i> , 2011 , 82, 103302	1.7	88
79	Giant Rashba-type spin splitting in bulk BiTeI. <i>Nature Materials</i> , 2011 , 10, 521-6	27	569
78	Direct observation of spin configuration in an exchange coupled Fe/NiO(100) system by x-ray magnetic circular- and linear- dichroism photoemission electron microscope. <i>Journal of Applied Physics</i> , 2011 , 110, 084306	2.5	6

(2009-2011)

New soft X-ray beamline BLO/LSO for long undulator of SPring-8: Design and status. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2011 , 649, 58-60	1.2	30
Enhanced silicon oxidation on titanium-covered Si(001). <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 305001	1.8	4
Dynamics of Magnetostatically Coupled Vortices Observed by Time-Resolved Photoemission Electron Microscopy. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 053001	1.4	7
Surface scattering via bulk continuum states in the 3D topological insulator Bi2Se3. <i>Physical Review Letters</i> , 2011 , 107, 056803	7.4	91
Spin-polarized surface bands of a three-dimensional topological insulator studied by high-resolution spin- and angle-resolved photoemission spectroscopy. <i>New Journal of Physics</i> , 2010 , 12, 065011	2.9	10
Spin-polarized semiconductor surface states localized in subsurface layers. <i>Physical Review B</i> , 2010 , 82,	3.3	33
Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. <i>Physical Review B</i> , 2010 , 81,	3.3	141
Direct spectroscopic evidence of spin-dependent hybridization between Rashba-split surface states and quantum-well states. <i>Physical Review Letters</i> , 2010 , 104, 156805	7.4	22
Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface. <i>Nature Communications</i> , 2010 , 1, 17	17.4	181
Large out-of-plane spin polarization in a spin-splitting one-dimensional metallic surface state on Si(557)-Au. <i>Physical Review B</i> , 2010 , 82,	3.3	52
Topological metal at the surface of an ultrathin Bi1\(\mathbb{B}\)Sbx alloy film. <i>Physical Review B</i> , 2010 , 81,	3.3	47
Robust spin polarization and spin textures on stepped Au(111) surfaces. <i>Physical Review Letters</i> , 2010 , 104, 187602	7.4	12
Complete Assignment of Spin Domains in Antiferromagnetic NiO(100) by Photoemission Electron Microscopy and Cluster Model Calculation. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 013703	1.5	8
Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3. <i>Physical Review Letters</i> , 2010 , 105, 076802	7.4	207
Experimental realization of a three-dimensional topological insulator phase in ternary chalcogenide TlBiSe[] <i>Physical Review Letters</i> , 2010 , 105, 146801	7.4	180
Spin-Split Quantum-Well States Induced by Hybridization with Rashba-Split Surface States. <i>Hyomen Kagaku</i> , 2010 , 31, 493-499		
Substrate dependence of anisotropic electronic structure in Ag(111) quantum film studied by angle-resolved photoelectron spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	16
Nanoscale chemical imaging by scanning tunneling microscopy assisted by synchrotron radiation. <i>Physical Review Letters</i> , 2009 , 102, 105503	7.4	33
	Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 58-60 Enhanced silicon oxidation on titanium-covered Si(001). Journal of Physics Condensed Matter, 2011, 23, 305001 Dynamics of Magnetostatically Coupled Vortices Observed by Time-Resolved Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2011, 50, 053001 Surface scattering via bulk continuum states in the 3D topological insulator Bi2Se3. Physical Review Letters, 2011, 107, 056803 Spin-polarized surface bands of a three-dimensional topological insulator studied by high-resolution spin- and angle-resolved photoemission spectroscopy. New Journal of Physics, 2010, 12, 065011 Spin-polarized semiconductor surface states localized in subsurface layers. Physical Review B, 2010, 82, 2010, 104, 105605 Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Physical Review B, 2010, 81, 2010, 81, 2010, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Associated Equipment, 2011, 649, 58-60 Enhanced Silicon oxidation on titanium-covered Si(001). Journal of Physics Condensed Matter, 2011, 23, 305001 Dynamics of Magnetostatically Coupled Vortices Observed by Time-Resolved Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2011, 50, 053001 Surface scattering via bulk continuum states in the 3D topological insulator Bi2Se3. Physical Review Letters, 2011, 107, 056803 Spin-polarized surface bands of a three-dimensional topological insulator studied by high-resolution spin- and angle-resolved photoemission spectroscopy. New Journal of Physics, 2010, 12, 065011 Spin-polarized semiconductor surface states localized in subsurface layers. Physical Review B, 2010, 81, 2010, 12, 065011 Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Physical Review B, 2010, 81, 33 Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Physical Review B, 2010, 81, 74 Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface. Nature Communications, 2010, 1, 17 Large out-of-plane spin polarization in a spin-splitting one-dimensional metallic surface state on Si(557)-Au. Physical Review B, 2010, 82. Topological metal at the surface of an ultrathin Bi185bx alloy film. Physical Review B, 2010, 81, 33 Robust spin polarization and spin textures on stepped Au(111) surfaces. Physical Review Letters, 2010, 104, 187602 Complete Assignment of Spin Domains in Antiferromagnetic NiO(100) by Photoemission Electron Microscopy and Cluster Model Calculation. Journal of the Physical Society of Japan, 2010, 79, 013703 Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3. Physical Review Letters, 2010, 105, 076802 Experimental realization of a three-dimensional topological insulator Biases in ternary chalcogenide TIBiSeIPhysical Review Letters, 2010, 105, 146801 Spin-Split Quantum-Well States Induced by Hybridization with Rash

59	Exchange splitting of the three 🛮 surface states of Ni(111) from three-dimensional spin- and angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	19
58	Electronic structure of dysprosium silicide films grown on a Si(111) surface. <i>Applied Surface Science</i> , 2009 , 256, 1156-1159	6.7	3
57	High efficiency and high energy-resolution spin-polarized photoemission spectrometer. <i>European Physical Journal: Special Topics</i> , 2009 , 169, 181-185	2.3	11
56	Development of High Efficiency Spin-polarized Photoemission Spectrometer and the Applications to Surface Science. <i>Hyomen Kagaku</i> , 2009 , 30, 312-318		1
55	A new spin-polarized photoemission spectrometer with very high efficiency and energy resolution. <i>Review of Scientific Instruments</i> , 2008 , 79, 123117	1.7	82
54	Weak Electron Correlation Effects Observed in Angle-Resolved Photoemission Spectra of MnSi(100). <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 024709	1.5	1
53	Spin polarization of quantum well states in Ag films induced by the Rashba effect at the surface. <i>Physical Review Letters</i> , 2008 , 101, 107604	7.4	50
52	Band structure of Tl/Ge(111)[Bf]): Angle-resolved photoemission and first-principles prediction of giant Rashba effect. <i>Physical Review B</i> , 2008 , 77,	3.3	17
51	Hidden surface states on pristine and H-passivated Ni(111): Angle-resolved photoemission and density-functional calculations. <i>Physical Review B</i> , 2008 , 77,	3.3	15
50	Surface restructuring process on a Ag/Ge(0 0 1) surface studied by photoelectron spectroscopy. <i>Applied Surface Science</i> , 2008 , 254, 7638-7641	6.7	1
49	Spin reorientation at the interface of Fe/NiO(001). <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2007 , 156-158, 482-485	1.7	4
48	Surface antiferromagnetic domain structures of NiO (0 0 1) studied using UV photoemission electron microscope. <i>Surface Science</i> , 2007 , 601, 4686-4689	1.8	7
47	Quantum-Size Effect in Uniform GeBn Alloy Nanodots Observed by Photoemission Spectroscopy. Japanese Journal of Applied Physics, 2007 , 46, L1176-L1178	1.4	7
46	Atomic and electronic structure of Tlte(111)[111]): LEED and ARPES measurements and first-principles calculations. <i>Physical Review B</i> , 2007 , 76,	3.3	21
45	Element specific imaging by scanning tunneling microscopy combined with synchrotron radiation light. <i>Applied Physics Letters</i> , 2006 , 89, 243119	3.4	33
44	Enhancement of electron correlation in Co thin clusters grown on StaAs(001). <i>Physical Review B</i> , 2006 , 73,	3.3	2
43	Surface states of a Pd monolayer formed on a Au(111) surface studied by angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2006 , 74,	3.3	15
42	Surface electronic structure of the (3 12) reconstruction induced by Yb on a Si(1 1 1) surface. <i>Applied Surface Science</i> , 2006 , 252, 5292-5295	6.7	3

(2002-2005)

41	Antiferromagnetic domain modulation of NiO(100) induced by thickness-dependent interfacial coupling with Cr overlayer. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2005 , 144-147, 753	3-756	4
40	Alkali metal-induced Si(1 1 1) 2121 structure: The Na case. <i>Surface Science</i> , 2005 , 590, 162-172	1.8	21
39	Scanning tunnelling microscope combined with synchrotron radiation for element specific analysis. Journal of Electron Spectroscopy and Related Phenomena, 2005 , 144-147, 1157-1161	1.7	9
38	One-dimensional electronic structure of the Sb-decorated Si(113)2 surface. <i>Surface Science</i> , 2005 , 583, 199-204	1.8	2
37	Fabrication of a glass-coated metal tip for synchrotron-radiation-light-irradiated scanning tunneling microscopy. <i>Review of Scientific Instruments</i> , 2005 , 76, 083711	1.7	24
36	Structural analysis of Ba-induced surface reconstruction on Si(111) by means of core-level photoemission. <i>Physical Review B</i> , 2005 , 71,	3.3	21
35	Evolution of Fermi surface by electron filling into a free-electronlike surface state. <i>Physical Review B</i> , 2005 , 71,	3.3	51
34	.RAD.21* .RAD.21 phase formed by Na adsorption on Si(111).RAD.3* .RAD.3-Ag and its electronic structure. <i>E-Journal of Surface Science and Nanotechnology</i> , 2005 , 3, 107-112	0.7	12
33	Development of a Scanning Tunneling Microscope Combined with a Synchrotron Radiation Light Source. <i>Hyomen Kagaku</i> , 2005 , 26, 752-756		2
32	Observation of Magnetic Domain Structure of Micro Magnetic Materials and Magnetic Thin Films by Photoemission Electron Microscope (PEEM). <i>Hyomen Kagaku</i> , 2005 , 26, 19-27		2
31	Magnetic Domain Imaging of Ni Micro Ring and Micro Dot array by Photoelectron Emission Microscopy. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 4179-4184	1.4	7
30	Development and trial measurement of synchrotron-radiation-light-illuminated scanning tunneling microscope. <i>Review of Scientific Instruments</i> , 2004 , 75, 2149-2153	1.7	26
29	Antiferromagnetic Domain Structure Imaging of Cleaved NiO(100) Surface Using Nonmagnetic Linear Dichroism at O K Edge: Essential Effect of Antiferromagnetic Crystal Distortion. <i>Journal of the Physical Society of Japan</i> , 2004 , 73, 2932-2935	1.5	26
28	Surface states band structure of Gd-induced one-dimensional chain structure on Si(111) surface measured by angle-resolved photoelectron spectroscopy. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2004 , 137-140, 125-129	1.7	2
27	Si(111)-\$sqrt{21}timessqrt{21}\$-(Ag+Cs) Surface Studied by Scanning Tunneling Microscopy and Angle-Resolved Photoemission Spectroscopy. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 4659-4662	1.4	10
26	Electronic evidence of asymmetry in the Si(111)3BAg structure. <i>Physical Review B</i> , 2003 , 68,	3.3	56
25	Two-Dimensional Surface Adatom of Gas Phase and Core-Level Photoemission Spectroscopy. <i>Hyomen Kagaku</i> , 2003 , 24, 556-562		
24	Core-level photoemission of the Si(111)EAg surface using synchrotron radiation. <i>Applied Surface Science</i> , 2002 , 190, 121-128	6.7	8

23	Atomic and electronic structures of Si()11-Sb surface: core-level shifts and surface states. <i>Surface Science</i> , 2002 , 513, 49-56	1.8	9
22	TEMPERATURE EVOLUTION OF THE PHOTOEMISSION SPECTRA FOR THE Si(111) SURFACE USING THE LASER ANNEALING METHOD. <i>Surface Review and Letters</i> , 2002 , 09, 769-774	1.1	
21	ELECTRONIC STRUCTURE OF Ag THIN FILMS ON A Ge(001) SURFACE. <i>Surface Review and Letters</i> , 2002 , 09, 681-686	1.1	4
20	DOMAIN IMAGING OF MESOSCOPIC MAGNETIC STRUCTURES BY PHOTOELECTRON EMISSION MICROSCOPY. <i>Surface Review and Letters</i> , 2002 , 09, 365-369	1.1	5
19	SPIN ARRANGEMENT OF THE Mn/Fe(001) SYSTEM INVESTIGATED BY SPIN-POLARIZED PHOTOELECTRON DIFFRACTION. <i>Surface Review and Letters</i> , 2002 , 09, 901-906	1.1	1
18	Spectroscopy Studies of Temperature-Induced Valence Transition on EuNi2(Si1-xGex)2 around Eu 3dØf, 4dØf and Ni 2pØd Excitation Regions. <i>Journal of the Physical Society of Japan</i> , 2002 , 71, 148-155	1.5	20
17	Temperature-Induced Valence Transition of EuNi2(Si0.25Ge0.75)2Studied by Eu 4dIfResonant Photoemission and Optical Conductivity. <i>Journal of the Physical Society of Japan</i> , 2002 , 71, 255-257	1.5	3
16	Experimental surface-state band structure of the Ba-induced Si(111)31 surface. <i>Physical Review B</i> , 2001 , 64,	3.3	30
15	Two-dimensional band mapping of 2H-TaSe2 using a display-type photoelectron spectrometer. Journal of Electron Spectroscopy and Related Phenomena, 1999 , 101-103, 355-360	1.7	5
14	Deduction of atomic orbitals in a valence band by two-dimensional angular distribution of photoelectrons. <i>Surface Science</i> , 1999 , 438, 214-222	1.8	12
13	Symmetry Analysis of the Fermi Surface States of Sr2RuO4by Display-Type Photoelectron Spectroscopy. <i>Journal of the Physical Society of Japan</i> , 1999 , 68, 1398-1403	1.5	3
12	Fermi surface of Sr2RuO4 studied by two-dimensional angle resolved photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1998 , 88-91, 473-477	1.7	7
11	Symmetry analysis of the Fermi surface of Bi2Sr2CaCu2O8 by display analyzer. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1998 , 88-91, 489-493	1.7	8
10	Two-dimensional angle-resolved resonance photoelectron spectroscopy of 1T-TaS2. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1998 , 88-91, 287-292	1.7	7
9	Angle-resolved photoelectron spectroscopy of the Si(111)3🛘 -Na surface. <i>Physical Review B</i> , 1997 , 55, 6762-6765	3.3	45
8	Linear and circular dichroism in photoemission angular distribution from the valence band of 1TIIaS2. <i>Physical Review B</i> , 1997 , 56, 7687-7693	3.3	18
7	Surface electronic structure of ordered alkali- and noble metal-overlayers on Si(111). <i>Applied Surface Science</i> , 1997 , 121-122, 89-97	6.7	31
6	Unusual two-dimensional angular distribution of photoelectrons of kish graphite and 1T-TaS2. <i>Solid State Communications</i> , 1996 , 98, 671-675	1.6	2

LIST OF PUBLICATIONS

5	Surface core level shifts of the Au adsorbed Si(111) reconstructed surfaces. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1996 , 80, 229-232	1.7	29	
4	Angle-resolved photoemission study of MxTiS2 (M=Mn, Fe, Co, Ni;x=,). <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1996 , 78, 477-480	1.7	15	
3	Two-dimensional angular distribution of photoemission spectra from the valence band of 1T-TaS2. Journal of Electron Spectroscopy and Related Phenomena, 1996 , 78, 489-492	1.7	5	
2	Photoemission study of the Si(111)3 x 1-K surface. <i>Physical Review B</i> , 1994 , 50, 1725-1732	3.3	85	
1	Surface and bulk core level shifts of the Si(111) 3 🗈 -Na and Si(111) 🖟 🗗 -Na surfaces. <i>Surface Science</i> , 1994 , 321, 105-110	1.8	59	