
Sondra T Bland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5167236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology, 2000, 39, 777-787.	4.1	1,217
2	Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience, 2005, 8, 365-371.	14.8	823
3	Opioid-Induced Clial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward. Scientific World Journal, The, 2007, 7, 98-111.	2.1	305
4	Opioid Activation of Toll-Like Receptor 4 Contributes to Drug Reinforcement. Journal of Neuroscience, 2012, 32, 11187-11200.	3.6	258
5	Early Exclusive Use of the Affected Forelimb After Moderate Transient Focal Ischemia in Rats. Stroke, 2000, 31, 1144-1152.	2.0	172
6	Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain, Behavior, and Immunity, 2008, 22, 1248-1256.	4.1	161
7	Stressor Controllability Modulates Stress-Induced Dopamine and Serotonin Efflux and Morphine-Induced Serotonin Efflux in the Medial Prefrontal Cortex. Neuropsychopharmacology, 2003, 28, 1589-1596.	5.4	131
8	Microinjection of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala. Neuroscience, 2004, 129, 509-519.	2.3	115
9	Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain. Brain, Behavior, and Immunity, 2010, 24, 329-338.	4.1	111
10	Use-Dependent Exaggeration of Brain Injury: Is Glutamate Involved?. Experimental Neurology, 1999, 157, 349-358.	4.1	107
11	Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiology and Behavior, 2012, 107, 440-450.	2.1	99
12	Expression of c-fos and BDNF mRNA in subregions of the prefrontal cortex of male and female rats after acute uncontrollable stress. Brain Research, 2005, 1051, 90-99.	2.2	93
13	The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain, Behavior, and Immunity, 2009, 23, 492-497.	4.1	90
14	Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior. Behavioural Brain Research, 2017, 323, 56-67.	2.2	71
15	Expression of fibroblast growth factor-2 and brain-derived neurotrophic factor mRNA in the medial prefrontal cortex and hippocampus after uncontrollable or controllable stress. Neuroscience, 2007, 144, 1219-1228.	2.3	69
16	Early overuse and disuse of the affected forelimb after moderately severe intraluminal suture occlusion of the middle cerebral artery in rats. Behavioural Brain Research, 2001, 126, 33-41.	2.2	68
17	Inescapable shock activates serotonergic neurons in all raphe nuclei of rat. Behavioural Brain Research, 2004, 153, 233-239.	2.2	66
18	Corpus Callosum Damage and InterhemispherIc Transfer of Information following Closed Head Injury in Children. Cortex, 1999, 35, 315-336.	2.4	60

Sondra T Bland

#	Article	IF	CITATIONS
19	Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus. Neuroscience, 2007, 150, 754-763.	2.3	58
20	Behavioral control of the stressor modulates stress-induced changes in neurogenesis and fibroblast growth factor-2. NeuroReport, 2006, 17, 593-597.	1.2	55
21	Effect of number of tailshocks on learned helplessness and activation of serotonergic and noradrenergic neurons in the rat. Behavioural Brain Research, 2005, 162, 299-306.	2.2	52
22	A novel immune-to-CNS communication pathway: Cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus. Brain, Behavior, and Immunity, 2007, 21, 711-718.	4.1	48
23	Stressor controllability modulates stress-induced serotonin but not dopamine efflux in the nucleus accumbens shell. Synapse, 2003, 49, 206-208.	1.2	43
24	Surgical and pharmacological suppression of glucocorticoids prevents the enhancement of morphine conditioned place preference by uncontrollable stress in rats. Psychopharmacology, 2005, 179, 409-417.	3.1	42
25	Movement-related glutamate levels in rat hippocampus, striatum, and sensorimotor cortex. Neuroscience Letters, 1999, 277, 119-122.	2.1	41
26	The effects of a single exposure to uncontrollable stress on the subsequent conditioned place preference responses to oxycodone, cocaine, and ethanol in rats. Psychopharmacology, 2007, 191, 909-917.	3.1	35
27	Electrolytic lesions and pharmacological inhibition of the dorsal raphe nucleus prevent stressor potentiation of morphine conditioned place preference in rats. Psychopharmacology, 2004, 171, 191-198.	3.1	34
28	The Medial Prefrontal Cortex Regulates the Differential Expression of Morphine-Conditioned Place Preference Following a Single Exposure to Controllable or Uncontrollable Stress. Neuropsychopharmacology, 2009, 34, 834-843.	5.4	34
29	The role of glucocorticoids in the uncontrollable stress-induced potentiation of nucleus accumbens shell dopamine and conditioned place preference responses to morphine. Psychoneuroendocrinology, 2006, 31, 653-663.	2.7	33
30	Stress-induced activity in the locus coeruleus is not sensitive to stressor controllability. Brain Research, 2009, 1285, 109-118.	2.2	28
31	Stress potentiation of morphine-induced dopamine efflux in the nucleus accumbens shell is dependent upon stressor uncontrollability and is mediated by the dorsal raphe nucleus. Neuroscience, 2004, 126, 705-715.	2.3	27
32	Effects of cocaine combined with a social cue on conditioned place preference and nucleus accumbens monoamines after isolation rearing in rats. Psychopharmacology, 2014, 231, 3041-3053.	3.1	25
33	Neonatal Escherichia coli infection alters glial, cytokine, and neuronal gene expression in response to acute amphetamine in adolescent rats. Neuroscience Letters, 2010, 474, 52-57.	2.1	24
34	Brain regional differences in social encounter-induced Fos expression in male and female rats after post-weaning social isolation. Brain Research, 2016, 1630, 120-133.	2.2	21
35	Prefrontal cortex serotonin, stress, and morphine-induced nucleus accumbens dopamine. NeuroReport, 2004, 15, 2637-2641.	1.2	16
36	Stress-induced glucocorticoids suppress the antisense molecular regulation of FGF-2 expression. Psychoneuroendocrinology, 2007, 32, 376-384.	2.7	16

Sondra T Bland

#	Article	IF	CITATIONS
37	Fructose and uric acid as drivers of a hyperactive foraging response: A clue to behavioral disorders associated with impulsivity or mania?. Evolution and Human Behavior, 2021, 42, 194-203.	2.2	12
38	A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat. Behavioural Brain Research, 2017, 317, 1-15.	2.2	11
39	Monoacylglycerol lipase inhibition alters social behavior in male and female rats after post-weaning social isolation. Behavioural Brain Research, 2018, 341, 146-153.	2.2	11
40	Acute exercise enhances fear extinction through a mechanism involving central mTOR signaling. Neurobiology of Learning and Memory, 2020, 176, 107328.	1.9	8
41	A novel social fear conditioning procedure alters social behavior and mTOR signaling in differentially housed adolescent rats. Developmental Psychobiology, 2021, 63, 74-87.	1.6	4
42	The effects of a single session of inescapable tailshock on the subsequent locomotor response to brief footshock and cocaine administration in rats. Psychopharmacology, 2007, 191, 899-907.	3.1	3
43	Hippocampus and Hippocampal Neurons. , 2019, , 57-68.		3