
Luis MarÃ-a Schang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5167127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zika Virus Induces Mitotic Catastrophe in Human Neural Progenitors by Triggering Unscheduled Mitotic Entry in the Presence of DNA Damage While Functionally Depleting Nuclear PNKP. Journal of Virology, 2022, 96, e0033322.	1.5	5
2	Role of high-dose exposure in transmission hot zones as a driver of SARS-CoV-2 dynamics. Journal of the Royal Society Interface, 2021, 18, 20200916.	1.5	7
3	Chromatin-mediated epigenetic regulation of HSV-1 transcription as a potential target in antiviral therapy. Antiviral Research, 2021, 192, 105103.	1.9	9
4	Changes in SARS-CoV-2 viral load and mortality during the initial wave of the pandemic in New York City. PLoS ONE, 2021, 16, e0257979.	1.1	3
5	Patterns of the COVID-19 pandemic spread around the world: exponential versus power laws. Journal of the Royal Society Interface, 2020, 17, 20200518.	1.5	58
6	Meeting report: 32nd International Conference on Antiviral Research. Antiviral Research, 2019, 169, 104550.	1.9	6
7	Chromatin dynamics and the transcriptional competence of HSV-1 genomes during lytic infections. PLoS Pathogens, 2019, 15, e1008076.	2.1	24
8	Timing Is Everything. MBio, 2018, 9, .	1.8	2
9	Antivirals acting on viral envelopes via biophysical mechanisms of action. Antiviral Research, 2018, 149, 164-173.	1.9	35
10	Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry. Antiviral Research, 2017, 147, 19-28.	1.9	28
11	An Essential Viral Transcription Activator Modulates Chromatin Dynamics. PLoS Pathogens, 2016, 12, e1005842.	2.1	19
12	Flunarizine prevents hepatitis C virus membrane fusion in a genotypeâ€dependent manner by targeting the potential fusion peptide within E1. Hepatology, 2016, 63, 49-62.	3.6	64
13	Interferonâ€inducible cholesterolâ€25â€hydroxylase restricts hepatitis C virus replication through blockage of membranous web formation. Hepatology, 2015, 62, 702-714.	3.6	78
14	Activation of Pro-survival CaMK4β/CREB and Pro-death MST1 signaling at early and late times during a mouse model of prion disease. Virology Journal, 2014, 11, 160.	1.4	4
15	Viral Reprogramming of the Daxx Histone H3.3 Chaperone during Early Epstein-Barr Virus Infection. Journal of Virology, 2014, 88, 14350-14363.	1.5	45
16	Development of kinomic analyses to identify dysregulated signaling pathways in cells expressing cytoplasmic PrP. Virology Journal, 2014, 11, 175.	1.4	2
17	A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans. Journal of Virology, 2014, 88, 7806-7817.	1.5	117
18	Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action. Future Virology, 2014, 9, 283-299.	0.9	6

Luis MarÃa Schang

#	Article	IF	CITATIONS
19	Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut, 2014, 63, 1137-1149.	6.1	148
20	5-(Perylen-3-yl)Ethynyl-arabino-Uridine (aUY11), an Arabino-Based Rigid Amphipathic Fusion Inhibitor, Targets Virion Envelope Lipids To Inhibit Fusion of Influenza Virus, Hepatitis C Virus, and Other Enveloped Viruses. Journal of Virology, 2013, 87, 3640-3654.	1.5	65
21	Chromatin Dynamics during Lytic Infection with Herpes Simplex Virus 1. Viruses, 2013, 5, 1758-1786.	1.5	31
22	The Differential Mobilization of Histones H3.1 and H3.3 by Herpes Simplex Virus 1 Relates Histone Dynamics to the Assembly of Viral Chromatin. PLoS Pathogens, 2013, 9, e1003695.	2.1	22
23	Herpes Simplex Virus 1 DNA Is in Unstable Nucleosomes throughout the Lytic Infection Cycle, and the Instability of the Nucleosomes Is Independent of DNA Replication. Journal of Virology, 2012, 86, 11287-11300.	1.5	36
24	The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54, 1947-1955.	3.6	255
25	Core Histones H2B and H4 Are Mobilized during Infection with Herpes Simplex Virus 1. Journal of Virology, 2011, 85, 13234-13252.	1.5	29
26	During Lytic Infections, Herpes Simplex Virus Type 1 DNA Is in Complexes with the Properties of Unstable Nucleosomes. Journal of Virology, 2010, 84, 1920-1933.	1.5	52
27	Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17339-17344.	3.3	139
28	Linker Histones Are Mobilized during Infection with Herpes Simplex Virus Type 1. Journal of Virology, 2008, 82, 8629-8646.	1.5	37
29	First demonstration of the effectiveness of inhibitors of cellular protein kinases in antiviral therapy. Expert Review of Anti-Infective Therapy, 2006, 4, 953-956.	2.0	22
30	Herpes Simplex Viruses in Antiviral Drug Discovery. Current Pharmaceutical Design, 2006, 12, 1357-1370.	0.9	23
31	Five Years of Progress on Cyclin-Dependent Kinases and other Cellular Proteins as Potential Targets for Antiviral Drugs. Antiviral Chemistry and Chemotherapy, 2006, 17, 293-320.	0.3	70
32	Purine and nonpurine pharmacological cyclin-dependent kinase inhibitors target initiation of viral transcription. Therapy: Open Access in Clinical Medicine, 2005, 2, 77-90.	0.2	4
33	Discovery of the antiviral activities of pharmacologic cyclin-dependent kinase inhibitors: from basic to applied science. Expert Review of Anti-Infective Therapy, 2005, 3, 145-149.	2.0	6
34	Roscovitine Inhibits Activation of Promoters in Herpes Simplex Virus Type 1 Genomes Independently of Promoter-Specific Factors. Journal of Virology, 2004, 78, 9352-9365.	1.5	45
35	Phosphorylation of Sp1 by Cyclin-dependent Kinase 2 Modulates the Role of Sp1 in CTP:Phosphocholine Cytidylyltransferase α Regulation during the S Phase of the Cell Cycle. Journal of Biological Chemistry, 2004, 279, 40220-40226.	1.6	48
36	Effects of pharmacological cyclin-dependent kinase inhibitors on viral transcription and replication. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1697, 197-209.	1.1	60

Luis MarÃa Schang

#	Article	IF	CITATIONS
37	Antiviral Drugs that Target Cellular Proteins May Play Major Roles in Combating HIV Resistance. Current Pharmaceutical Design, 2004, 10, 4081-4101.	0.9	23
38	The cell cycle, cyclin-dependent kinases, and viral infections: new horizons and unexpected connections. Progress in Cell Cycle Research, 2003, 5, 103-24.	0.9	36
39	Explant-Induced Reactivation of Herpes Simplex Virus Occurs in Neurons Expressing Nuclear cdk2 and cdk4. Journal of Virology, 2002, 76, 7724-7735.	1.5	48
40	Cyclin-dependent kinases as cellular targets for antiviral drugs. Journal of Antimicrobial Chemotherapy, 2002, 50, 779-792.	1.3	92
41	Pharmacological Cyclin-Dependent Kinase Inhibitors Inhibit Replication of Wild-Type and Drug-Resistant Strains of Herpes Simplex Virus and Human Immunodeficiency Virus Type 1 by Targeting Cellular, Not Viral, Proteins. Journal of Virology, 2002, 76, 7874-7882.	1.5	109
42	Roscovitine, a Specific Inhibitor of Cellular Cyclin-Dependent Kinases, Inhibits Herpes Simplex Virus DNA Synthesis in the Presence of Viral Early Proteins. Journal of Virology, 2000, 74, 2107-2120.	1.5	92
43	Transactivation of Herpes Simplex Virus Type 1 Immediate-Early Gene Expression by Virion-Associated Factors Is Blocked by an Inhibitor of Cyclin-Dependent Protein Kinases. Journal of Virology, 1999, 73, 8843-8847.	1.5	40
44	Transcription of Herpes Simplex Virus Immediate-Early and Early Genes Is Inhibited by Roscovitine, an Inhibitor Specific for Cellular Cyclin-Dependent Kinases. Journal of Virology, 1999, 73, 2161-2172.	1.5	87
45	Requirement for Cellular Cyclin-Dependent Kinases in Herpes Simplex Virus Replication and Transcription. Journal of Virology, 1998, 72, 5626-5637.	1.5	151