Michael J Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5166962/publications.pdf Version: 2024-02-01

MICHAEL HAAS

#	Article	IF	CITATIONS
1	Insulin mimetic effect of Dâ€allulose on apolipoprotein Aâ€I gene. Journal of Food Biochemistry, 2022, 46, e14064.	1.2	1
2	The effect of black seed (Nigella sativa) extract on lipid metabolism in HepG2 cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159155.	1.2	1
3	The effect of nicotine and dextrose on endoplasmic reticulum stress in human coronary artery endothelial cells. Toxicology Research, 2021, 10, 284-291.	0.9	6
4	Effect of anti-hyperglycemic drugs on endoplasmic reticulum (ER) stress in human coronary artery endothelial cells. European Journal of Pharmacology, 2021, 907, 174249.	1.7	19
5	Differential effects of cyclooxygenase-2 (COX-2) inhibitors on endoplasmic reticulum (ER) stress in human coronary artery endothelial cells. Vascular Pharmacology, 2021, 142, 106948.	1.0	1
6	High-throughput analysis identifying drugs that reduce oxidative and ER stress in human coronary artery endothelial cells. European Journal of Pharmacology, 2020, 879, 173119.	1.7	8
7	Naturally occurring rare sugars are free radical scavengers and can ameliorate endoplasmic reticulum stress. International Journal for Vitamin and Nutrition Research, 2020, 90, 210-220.	0.6	6
8	Inhibition of Pro-Inflammatory Cytokine Secretion by Select Antioxidants in Human Coronary Artery Endothelial Cells. International Journal for Vitamin and Nutrition Research, 2020, 90, 103-112.	0.6	4
9	The Effects of Known Cardioprotective Drugs on Proinflammatory Cytokine Secretion From Human Coronary Artery Endothelial Cells. American Journal of Therapeutics, 2019, 26, e321-e332.	0.5	20
10	Inhibition of hepatic apolipoprotein A-I gene expression by histamine. European Journal of Pharmacology, 2018, 823, 49-57.	1.7	7
11	Regulation of apolipoprotein A-I gene expression by the histamine H1 receptor: Requirement for NF-κB. Life Sciences, 2018, 208, 102-110.	2.0	5
12	High-Throughput Analysis Identifying Drugs That Regulate Apolipoprotein A-I Synthesis. Assay and Drug Development Technologies, 2017, 15, 362-371.	0.6	5
13	Statins Prevent Dextrose-Induced Endoplasmic Reticulum Stress and Oxidative Stress in Endothelial and HepG2 Cells. American Journal of Therapeutics, 2016, 23, e1456-e1463.	0.5	14
14	Beta Blockers Suppress Dextrose-Induced Endoplasmic Reticulum Stress, Oxidative Stress, and Apoptosis in Human Coronary Artery Endothelial Cells. American Journal of Therapeutics, 2016, 23, e1524-e1531.	0.5	17
15	Pro-inflammatory signaling by 24,25-dihydroxyvitamin D3 in HepG2 cells. Journal of Molecular Endocrinology, 2016, 57, 87-96.	1.1	9
16	Inhibition of endoplasmic reticulum stress and oxidative stress by vitamin D in endothelial cells. Free Radical Biology and Medicine, 2016, 99, 1-10.	1.3	52
17	Angiotensin II receptor one (AT1) mediates dextrose induced endoplasmic reticulum stress and superoxide production in human coronary artery endothelial cells. International Journal of Cardiology, 2016, 220, 842-850.	0.8	14
18	Inhibition of ABCA1 Protein Expression and Cholesterol Efflux by TNFÂα in MLO-Y4 Osteocytes. Calcified Tissue International, 2016, 98, 586-595.	1.5	7

MICHAEL J HAAS

#	Article	IF	CITATIONS
19	Asymmetrical cross-talk between the endoplasmic reticulum stress and oxidative stress caused by dextrose. Life Sciences, 2016, 144, 37-48.	2.0	13
20	T2D and Depression Risk Gene Proteasome Modulator 9 is Linked to Insomnia. Scientific Reports, 2015, 5, 12032.	1.6	6
21	The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells. Life Sciences, 2015, 134, 9-15.	2.0	15
22	Targeting High-Density Lipoproteins: Increasing De Novo Production Versus Decreasing Clearance. Drugs, 2015, 75, 713-722.	4.9	14
23	Inhibition of Apolipoprotein Aâ€i Expression by TNFâ€Alpha in HepC2 Cells: Requirement for câ€ <i>jun</i> . Journal of Cellular Biochemistry, 2014, 115, 253-260.	1.2	13
24	The Effect of Black Seed (Nigella <i>sativa</i>) Extract on FOXO3 Expression in HepG2 Cells. Phytotherapy Research, 2014, 28, 873-879.	2.8	6
25	Induction of hepatic apolipoprotein A-I gene expression by the isoflavones quercetin and isoquercetrin. Life Sciences, 2014, 110, 8-14.	2.0	13
26	Identification of ATP8B1 as a Blood–Brain Barrier-Enriched Protein. Cellular and Molecular Neurobiology, 2014, 34, 473-478.	1.7	4
27	Induction of apolipoprotein A-I gene expression by black seed (<i>Nigella sativa</i>) extracts. Pharmaceutical Biology, 2014, 52, 1119-1127.	1.3	3
28	The Effect of Nutritional Supplements on Serum High-Density Lipoprotein Cholesterol and Apolipoprotein A-I. American Journal of Cardiovascular Drugs, 2014, 14, 253-274.	1.0	14
29	Sp-2-propylthio-ATP-α-B and Sp-2-propylthio-ATP-α-B,β-γ-dichloromethylene are novel potent and specific agonists of the human P2Y11 receptor. Biochemical Pharmacology, 2013, 86, 645-655.	2.0	9
30	Endoplasmic reticulum stress in HepG2 cells inhibits apolipoprotein A-I secretion. Life Sciences, 2013, 92, 72-80.	2.0	13
31	Induction of apolipoprotein A-I gene expression by glucagon-like peptide-1 and exendin-4 in hepatocytes but not intestinal cells. Metabolism: Clinical and Experimental, 2013, 62, 265-274.	1.5	14
32	What evidence is there for the role of vitamin D and apoA-1 in atheroprotection?. Clinical Lipidology, 2012, 7, 255-257.	0.4	2
33	Inhibition of Apolipoprotein A″ Gene Expression by Obesityâ€Associated Endocannabinoids. Obesity, 2012, 20, 721-729.	1.5	13
34	Inhibition of apolipoprotein A-I gene by the aryl hydrocarbon receptor: A potential mechanism for smoking-associated hypoalphalipoproteinemia. Life Sciences, 2012, 91, 64-69.	2.0	10
35	Estrogen-dependent inhibition of dextrose-induced endoplasmic reticulum stress and superoxide generation in endothelial cells. Free Radical Biology and Medicine, 2012, 52, 2161-2167.	1.3	35
36	24, 25-Dihydroxycholecalciferol but not 25-hydroxycholecalciferol suppresses apolipoprotein A-I gene expression. Life Sciences, 2011, 88, 110-116.	2.0	14

MICHAEL J HAAS

#	Article	IF	CITATIONS
37	The emerging evidence for vitamin D–mediated regulation of apolipoprotein A-I synthesis. Nutrition Research, 2011, 31, 805-812.	1.3	39
38	Inflammation, high-density lipoprotein and cardiovascular dysfunction. Current Opinion in Infectious Diseases, 2011, 24, 265-272.	1.3	33
39	Nicotinic acid induces apolipoprotein A-I gene expression in HepG2 and Caco-2 cell lines. Metabolism: Clinical and Experimental, 2011, 60, 1790-1796.	1.5	14
40	Glucose-induced endoplasmic reticulum stress is independent of oxidative stress: A mechanistic explanation for the failure of antioxidant therapy in diabetes. Free Radical Biology and Medicine, 2011, 50, 1140-1143.	1.3	45
41	Hyperglycemia-induced endoplasmic reticulum stress in endothelial cells. Nutrition, 2010, 26, 1146-1150.	1.1	59
42	Regulation of highâ€density lipoprotein by inflammatory cytokines: establishing links between immune dysfunction and cardiovascular disease. Diabetes/Metabolism Research and Reviews, 2010, 26, 90-99.	1.7	52
43	Therapeutic Interventions to Enhance Apolipoprotein A-I-Mediated Cardioprotection. Drugs, 2010, 70, 805-821.	4.9	16
44	Effects of antioxidants on glucose-induced oxidative stress and endoplasmic reticulum stress in endothelial cells. Diabetes Research and Clinical Practice, 2010, 87, 161-166.	1.1	45
45	Obesityâ€related Changes in Highâ€density Lipoprotein Metabolism. Obesity, 2008, 16, 1152-1160.	1.5	94
46	Differential regulation of apolipoprotein A-I gene expression by vitamin D receptor modulators. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 264-273.	1.1	24
47	Ascorbic acid and α-tocopherol down-regulate apolipoprotein A-I gene expression in HepG2 and Caco-2 cell lines. Metabolism: Clinical and Experimental, 2006, 55, 159-167.	1.5	15
48	Inhibition of Apolipoprotein AI Gene Expression by Tumor Necrosis Factor α:  Roles for MEK/ERK and JNK Signaling. Biochemistry, 2006, 45, 2408-2413.	1.2	50
49	Suppression of Hyperglycemia-Induced Superoxide Formation and Endothelin-1 Gene Expression by Carvedilol. American Journal of Therapeutics, 2006, 13, 2-7.	O.5	9
50	Statins Prevent Dextrose-Induced Endothelial Barrier Dysfunction, Possibly Through Inhibition of Superoxide Formation. Diabetes, 2006, 55, 474-479.	0.3	24
51	Inhibition of apolipoprotein Al gene expression by 1, 25-dihydroxyvitamin D3. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1737, 16-26.	1.2	66
52	Cyclooxygenase inhibition is associated with downregulation of apolipoprotein AI promoter activity in cultured hepatoma cell line HepG2. Metabolism: Clinical and Experimental, 2004, 53, 174-181.	1.5	9
53	Induction of the apolipoprotein AI promoter by Sp1 is repressed by saturated fatty acids. Metabolism: Clinical and Experimental, 2004, 53, 1342-1348.	1.5	22
54	Microarray analysis of thyroid hormone-induced changes in mRNA expression in the adult rat brain. Neuroscience Letters, 2004, 365, 14-18.	1.0	40

MICHAEL J HAAS

#	Article	IF	CITATIONS
55	Suppression of apolipoprotein Al gene expression in HepG2 cells by TNF α and IL-1β. Biochimica Et Biophysica Acta - General Subjects, 2003, 1623, 120-128.	1.1	62
56	Effects of dehydroepiandrosterone on rat apolipoprotein Al gene expression in the human hepatoma cell line, HepG2. Metabolism: Clinical and Experimental, 2002, 51, 376-379.	1.5	11
57	Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochemical Research, 2002, 27, 249-252.	1.6	76