
Gerd Masselink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/516662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters, 2016, 43, 2135-2143.	1.5	248
2	Swash-zone morphodynamics. Continental Shelf Research, 2006, 26, 661-680.	0.9	215
3	Field investigation of sediment transport in the swash zone. Continental Shelf Research, 1998, 18, 1179-1199.	0.9	190
4	Swash infiltration-exfiltration and sediment transport. Journal of Geophysical Research, 1998, 103, 30813-30824.	3.3	183
5	Morphodynamics of intertidal bars in wave-dominated coastal settings — A review. Geomorphology, 2006, 73, 33-49.	1.1	178
6	Concepts in gravel beach dynamics. Earth-Science Reviews, 2006, 79, 33-52.	4.0	175
7	The extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surface Processes and Landforms, 2016, 41, 378-391.	1.2	174
8	Seasonal changes in beach morphology along the sheltered coastline of Perth, Western Australia. Marine Geology, 2001, 172, 243-263.	0.9	164
9	Morphodynamic characteristics and classification of beaches in England and Wales. Marine Geology, 2011, 286, 1-20.	0.9	154
10	â€~Low energy' sandy beaches in marine and estuarine environments: a review. Geomorphology, 2002, 48, 147-162.	1.1	152
11	Sandy beaches can survive sea-level rise. Nature Climate Change, 2020, 10, 993-995.	8.1	136
12	Flow velocity and sediment transport in the swash zone of a steep beach. Marine Geology, 1997, 138, 91-103.	0.9	132
13	Observations of morphological change and sediment transport on a steep gravel beach. Marine Geology, 2006, 229, 59-77.	0.9	112
14	The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England. Marine Geology, 2016, 382, 224-241.	0.9	111
15	Suspended sediment transport in the swash zone of a dissipative beach. Marine Geology, 2005, 216, 169-189.	0.9	108
16	Response of wave-dominated and mixed-energy barriers to storms. Marine Geology, 2014, 352, 321-347.	0.9	107
17	Role of wave forcing, storms and NAO in outer bar dynamics on a high-energy, macro-tidal beach. Geomorphology, 2014, 226, 76-93.	1.1	106
18	The role of swash infiltration in determining the beachface gradient: a numerical study. Marine Geology, 2001, 176, 139-156.	0.9	105

#	Article	IF	CITATIONS
19	The influence of bore turbulence on sediment transport in the swash and inner surf zones. Continental Shelf Research, 2004, 24, 757-771.	0.9	105
20	Modelling storm hydrodynamics on gravel beaches with XBeach-G. Coastal Engineering, 2014, 91, 231-250.	1.7	103
21	Temporal observations of rip current circulation on a macro-tidal beach. Continental Shelf Research, 2010, 30, 1149-1165.	0.9	100
22	Morphodynamics of meso- and macrotidal beaches: examples from central Queensland, Australia. Marine Geology, 1995, 129, 1-23.	0.9	98
23	A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly. Geophysical Research Letters, 2017, 44, 1384-1392.	1.5	94
24	A new parameterisation for runup on gravel beaches. Coastal Engineering, 2016, 117, 176-190.	1.7	88
25	Morphodynamics of intertidal bar morphology on a macrotidal beach under low-energy wave conditions, North Lincolnshire, England. Marine Geology, 2002, 190, 591-608.	0.9	87
26	Storm response and beach rotation on a gravel beach, Slapton Sands, U.K Marine Geology, 2010, 278, 77-99.	0.9	87
27	Beach recovery from extreme storm activity during the 2013–14 winter along the Atlantic coast of Europe. Earth Surface Processes and Landforms, 2019, 44, 393-401.	1.2	85
28	A morphodynamic model to simulate the seasonal closure of tidal inlets. Coastal Engineering, 1999, 37, 1-36.	1.7	84
29	Modelling the morphodynamics of gravel beaches during storms with XBeach-G. Coastal Engineering, 2015, 103, 52-66.	1.7	84
30	Grainâ€size information from the statistical properties of digital images of sediment. Sedimentology, 2009, 56, 421-438.	1.6	81
31	Increased Winterâ€Mean Wave Height, Variability, and Periodicity in the Northeast Atlantic Over 1949–2017. Geophysical Research Letters, 2018, 45, 3586-3596.	1.5	81
32	BeachWin: modelling groundwater effects on swash sediment transport and beach profile changes. Environmental Modelling and Software, 2002, 17, 313-320.	1.9	79
33	Group bound long waves as a source of infragravity energy in the surf zone. Continental Shelf Research, 1995, 15, 1525-1547.	0.9	76
34	Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Marine Geology, 2009, 267, 18-35.	0.9	76
35	Classification of beach response to extreme storms. Geomorphology, 2017, 295, 722-737.	1.1	76
36	The effect of sea breeze on beach morphology, surf zone hydrodynamics and sediment resuspension. Marine Geology, 1998, 146, 115-135.	0.9	75

#	Article	IF	CITATIONS
37	Swash zone sediment fluxes: Field observations. Coastal Engineering, 2011, 58, 28-44.	1.7	75
38	Flow velocities, sediment transport and morphological change in the swash zone of two contrasting beaches. Marine Geology, 2006, 227, 227-240.	0.9	73
39	Observations of gravel beach dynamics during high energy wave conditions using a laser scanner. Geomorphology, 2015, 228, 15-27.	1.1	73
40	Beach cusp morphodynamics. Earth Surface Processes and Landforms, 1997, 22, 1139-1155.	1.2	71
41	Implications of delta retreat on wave propagation and longshore sediment transportÂ-ÂGuadalfeo case study (southern Spain). Marine Geology, 2016, 382, 1-16.	0.9	69
42	Offshore wave climate, Perth (Western Australia), 1994 - 96. Marine and Freshwater Research, 1999, 50, 95.	0.7	68
43	Swash zone sediment transport, step dynamics and morphological response on a gravel beach. Marine Geology, 2010, 274, 50-68.	0.9	67
44	Overwash threshold for gravel barriers. Coastal Engineering, 2012, 63, 48-61.	1.7	65
45	Relaxation time effects of wave ripples on tidal beaches. Geophysical Research Letters, 2007, 34, .	1.5	64
46	The role of bore collapse and local shear stresses on the spatial distribution of sediment load in the uprush of an intermediate-state beach. Marine Geology, 2004, 203, 109-118.	0.9	63
47	Cross-shore sediment transport and morphological response on a macrotidal beach with intertidal bar morphology, Truc Vert, France. Marine Geology, 2008, 251, 141-155.	0.9	63
48	Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology, 2021, 383, 107707.	1.1	63
49	Location and height of intertidal bars on macrotidal ridge and runnel beaches. Earth Surface Processes and Landforms, 2001, 26, 759-774.	1.2	61
50	Controls on macrotidal rip current circulation and hazard. Geomorphology, 2014, 214, 198-215.	1.1	61
51	Morpho-sedimentary dynamics of a micro-tidal mixed sand and gravel beach, Playa Granada, southern Spain. Marine Geology, 2016, 379, 28-38.	0.9	59
52	Coupling cross-shore and longshore sediment transport to model storm response along a mixed sand-gravel coast under varying wave directions. Coastal Engineering, 2017, 129, 93-104.	1.7	58
53	Role of waves and tides on depth of closure and potential for headland bypassing. Marine Geology, 2019, 407, 60-75.	0.9	57
54	Defining Coastal Resilience. Water (Switzerland), 2019, 11, 2587.	1.2	56

#	Article	IF	CITATIONS
55	The ECORS-Truc Vert'08 nearshore field experiment: presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions. Ocean Dynamics, 2011, 61, 2073-2098.	0.9	53
56	Morphological evolution of beach cusps and associated swash circulation patterns. Marine Geology, 1998, 146, 93-113.	0.9	51
57	Observations of nearshore infragravity wave dynamics under high energy swell and wind-wave conditions. Continental Shelf Research, 2017, 138, 19-31.	0.9	51
58	Coral reef islands can accrete vertically in response to sea level rise. Science Advances, 2020, 6, eaay3656.	4.7	51
59	Formation and evolution of multiple intertidal bars on macrotidal beaches: application of a morphodynamic model. Coastal Engineering, 2004, 51, 713-730.	1.7	50
60	From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Marine Geology, 2019, 417, 106012.	0.9	50
61	Field investigation of wave propagation over a bar and the consequent generation of secondary waves. Coastal Engineering, 1998, 33, 1-9.	1.7	48
62	Coastal cliff ground motions and response to extreme storm waves. Geophysical Research Letters, 2015, 42, 847-854.	1.5	48
63	Dynamics of rip currents associated with groynes — field measurements, modelling and implications for beach safety. Coastal Engineering, 2016, 107, 53-69.	1.7	48
64	Coastal embayment rotation: Response to extreme events and climate control, using full embayment surveys. Geomorphology, 2019, 327, 385-403.	1.1	47
65	Climate forcing of regionally-coherent extreme storm impact and recovery on embayed beaches. Marine Geology, 2018, 401, 112-128.	0.9	46
66	Morphodynamic evolution of a macrotidal barrier estuary. Marine Geology, 1995, 129, 25-46.	0.9	45
67	Magnitude and cross-shore distribution of bed return flow measured on natural beaches. Coastal Engineering, 1995, 25, 165-190.	1.7	44
68	Depths of Modern Coastal Sand Clinoforms. Journal of Sedimentary Research, 2012, 82, 469-481.	0.8	43
69	A rules-based shoreface translation and sediment budgeting tool for estimating coastal change: ShoreTrans. Marine Geology, 2021, 435, 106466.	0.9	43
70	Single extreme storm sequence can offset decades of shoreline retreat projected to result from sea-level rise. Communications Earth & Environment, 2022, 3, .	2.6	43
71	Swash–groundwater interaction on a steep gravel beach. Continental Shelf Research, 2006, 26, 2503-2519.	0.9	42
72	High frequency in-situ field measurements of morphological response on a fine gravel beach during energetic wave conditions. Marine Geology, 2013, 342, 1-13.	0.9	41

#	Article	IF	CITATIONS
73	Comprehensive Field Study of Swash-Zone Processes. II: Sheet Flow Sediment Concentrations during Quasi-Steady Backwash. Journal of Waterway, Port, Coastal and Ocean Engineering, 2014, 140, 29-42.	0.5	41
74	Barrier dynamics experiment (BARDEX): Aims, design and procedures. Coastal Engineering, 2012, 63, 3-12.	1.7	40
75	Large-scale Barrier Dynamics Experiment II (BARDEX II): Experimental design, instrumentation, test program, and data set. Coastal Engineering, 2016, 113, 3-18.	1.7	40
76	SPECTRAL ANALYSIS OF GEOMORPHIC TIME SERIES: AUTO-SPECTRUM. Earth Surface Processes and Landforms, 1996, 21, 1021-1040.	1.2	38
77	Onshore sediment transport on a sandy beach under varied wave conditions: Flow velocity skewness, wave asymmetry or bed ventilation?. Marine Geology, 2009, 259, 86-101.	0.9	38
78	Geometry and dynamics of wave ripples in the nearshore zone of a coarse sandy beach. Journal of Geophysical Research, 2007, 112, .	3.3	37
79	Short-term morphological change and sediment dynamics in the intertidal zone of a macrotidal beach. Sedimentology, 2007, 54, 39-53.	1.6	37
80	Rip Current Prediction: Development, Validation, and Evaluation of an Operational Tool. Journal of Coastal Research, 2012, 29, 283.	0.1	37
81	Measurements of morphodynamic and hydrodynamic overwash processes in a large-scale wave flume. Coastal Engineering, 2016, 113, 33-46.	1.7	37
82	Physical modelling of the response of reef islands to sea-level rise. Geology, 2019, 47, 803-806.	2.0	37
83	Alongshore variation in beach cusp morphology in a coastal embayment. Earth Surface Processes and Landforms, 1999, 24, 335-347.	1.2	36
84	Characteristics and dynamics of multiple intertidal bars, north Lincolnshire, England. Earth Surface Processes and Landforms, 2006, 31, 428-443.	1.2	36
85	Tidal asymmetry in sediment resuspension on a macrotidal beach in northwestern Australia. Marine Geology, 2000, 163, 257-274.	0.9	35
86	The Impact of Waves and Tides on Residual Sand Transport on a Sedimentâ€Poor, Energetic, and Macrotidal Continental Shelf. Journal of Geophysical Research: Oceans, 2019, 124, 4974-5002.	1.0	34
87	Evaluation of Longshore Transport Equations with OBS Sensors, Streamer Traps, and Fluorescent Tracer. Journal of Coastal Research, 2005, 215, 915-931.	0.1	32
88	Wave and Tidal Controls on Embayment Circulation and Headland Bypassing for an Exposed, Macrotidal Site. Journal of Marine Science and Engineering, 2018, 6, 94.	1.2	32
89	Application of airborne LiDAR to investigate rates of recession in rocky coast environments. Journal of Coastal Conservation, 2015, 19, 831-845.	0.7	31
90	Evaluation of salt marsh restoration by means of self-regulating tidal gate – Avon estuary, South Devon, UK. Ecological Engineering, 2017, 106, 174-190.	1.6	31

#	Article	IF	CITATIONS
91	Test of edge wave forcing during formation of rhythmic beach morphology. Journal of Geophysical Research, 2004, 109, .	3.3	30
92	Storm overwash of a gravel barrier: Field measurements and XBeach-G modelling. Coastal Engineering, 2017, 120, 22-35.	1.7	30
93	The Application of Bagnold-Type Sediment Transport Models in the Swash Zone. Journal of Coastal Research, 2005, 215, 887-895.	0.1	29
94	The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms. Journal of Geophysical Research F: Earth Surface, 2018, 123, 97-123.	1.0	29
95	Multi-annual embayment sediment dynamics involving headland bypassing and sediment exchange across the depth of closure. Geomorphology, 2019, 343, 48-64.	1.1	29
96	Evidence of a Mid-Holocene Sea Level Highstand from the Sedimentary Record of a Macrotidal Barrier and Paleoestuary System in Northwestern Australia. Journal of Coastal Research, 2006, 221, 100-112.	0.1	28
97	Large-scale laboratory investigation into the effect of varying back-barrier lagoon water levels on gravel beach morphology and swash zone sediment transport. Coastal Engineering, 2012, 63, 23-38.	1.7	28
98	Physical and Numerical Modeling of Infragravity Wave Generation and Transformation on Coral Reef Platforms. Journal of Geophysical Research: Oceans, 2019, 124, 1410-1433.	1.0	28
99	A coastal vulnerability assessment for planning climate resilient infrastructure. Ocean and Coastal Management, 2018, 163, 101-112.	2.0	26
100	Sediment trend models fail to reproduce small-scale sediment transport patterns on an intertidal beach. Sedimentology, 2008, 55, 667-687.	1.6	25
101	Detailed investigation of overwash on a gravel barrier. Marine Geology, 2014, 350, 27-38.	0.9	25
102	Observations of the swash zone on a gravel beach during a storm using a laser-scanner (Lidar). Journal of Coastal Research, 2013, 65, 636-641.	0.1	24
103	Water-level controls on macro-tidal rip currents. Continental Shelf Research, 2014, 75, 28-40.	0.9	24
104	Comprehensive Field Study of Swash-Zone Processes. I: Experimental Design with Examples of Hydrodynamic and Sediment Transport Measurements. Journal of Waterway, Port, Coastal and Ocean Engineering, 2014, 140, 14-28.	0.5	24
105	Tide-driven dune migration and sediment transport on an intertidal shoal in a shallow estuary in Devon, UK. Marine Geology, 2009, 262, 82-95.	0.9	23
106	The role of beach morphology on coastal cliff erosion under extreme waves. Earth Surface Processes and Landforms, 2018, 43, 1213-1228.	1.2	23
107	Forecasting coastal overtopping at engineered and naturally defended coastlines. Coastal Engineering, 2021, 164, 103827.	1.7	23
108	The effect of bedform dynamics on computing suspended sediment fluxes using optical backscatter sensors and current meters. Coastal Engineering, 2008, 55, 251-260.	1.7	22

#	Article	IF	CITATIONS
109	Determination of wave–shoreline dynamics on a macrotidal gravel beach using Canonical Correlation Analysis. Coastal Engineering, 2010, 57, 290-303.	1.7	22
110	Morphodynamic variability of high-energy macrotidal beaches, Cornwall, UK. Marine Geology, 2014, 350, 97-111.	0.9	22
111	Overwash experiment on a sandy barrier. Journal of Coastal Research, 2013, 65, 778-783.	0.1	21
112	Modelling storm response on gravel beaches using XBeach-G. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2014, 167, 173-191.	1.4	20
113	Predicting beach rotation using multiple atmospheric indices. Marine Geology, 2020, 426, 106207.	0.9	20
114	Sediment supply dampens the erosive effects of sea-level rise on reef islands. Scientific Reports, 2021, 11, 5523.	1.6	20
115	Steps to Develop Early Warning Systems and Future Scenarios of Storm Wave-Driven Flooding Along Coral Reef-Lined Coasts. Frontiers in Marine Science, 2020, 7, .	1.2	19
116	Field measurements and hydrodynamic modelling to evaluate the importance of factors controlling overwash. Coastal Engineering, 2019, 152, 103523.	1.7	18
117	Nearshore sediment pathways and potential sediment budgets in embayed settings over a multi-annual timescale. Marine Geology, 2020, 427, 106270.	0.9	18
118	A cross-shore suspended sediment transport shape function parameterisation for natural beaches. Continental Shelf Research, 2009, 29, 1948-1960.	0.9	17
119	Groundwater dynamics in coastal gravel barriers backed by freshwater lagoons and the potential for saline intrusion: Two cases from the UK. Journal of Marine Systems, 2013, 123-124, 19-32.	0.9	17
120	Wave breaking patterns control rip current flow regimes and surfzone retention. Marine Geology, 2016, 382, 176-190.	0.9	17
121	Application of multiple linear regression and Bayesian belief network approaches to model life risk to beach users in the UK. Ocean and Coastal Management, 2017, 139, 12-23.	2.0	17
122	Highâ€efficiency gravel longshore sediment transport and headland bypassing over an extreme wave event. Earth Surface Processes and Landforms, 2019, 44, 2720-2727.	1.2	16
123	Coastal adaptation to climate change through zonation: A review of coastal change management areas (CCMAs) in England. Ocean and Coastal Management, 2021, 215, 105950.	2.0	16
124	Coastal gravel barrier hydrology — Observations from a prototype-scale laboratory experiment (BARDEX). Coastal Engineering, 2012, 63, 13-22.	1.7	15
125	Physical modelling of reef island topographic response to rising sea levels. Geomorphology, 2019, 345, 106833.	1.1	15
126	Regionally-Coherent Embayment Rotation: Behavioural Response to Bi-Directional Waves and Atmospheric Forcing. Journal of Marine Science and Engineering, 2019, 7, 116.	1.2	15

#	Article	IF	CITATIONS
127	Dynamics of multiple intertidal bars over semiâ€diurnal and lunar tidal cycles, North Lincolnshire, England. Earth Surface Processes and Landforms, 2008, 33, 1473-1490.	1.2	14
128	Systematic analysis of rocky shore platform morphology at large spatial scale using LiDAR-derived digital elevation models. Geomorphology, 2017, 286, 45-57.	1.1	14
129	Infragravity wave generation on shore platforms: Bound long wave versus breakpoint forcing. Geomorphology, 2020, 350, 106880.	1.1	14
130	Role of Atmospheric Indices in Describing Inshore Directional Wave Climate in the United Kingdom and Ireland. Earth's Future, 2021, 9, e2020EF001625.	2.4	14
131	Performance of a dynamic cobble berm revetment for coastal protection, under increasing water level Coastal Engineering, 2020, 159, 103712.	1.7	14
132	In-situ estimates of net sediment flux per swash: Reply to discussion by TE Baldock of "Measurement of wave-by-wave bed-levels in the swash zoneâ€. Coastal Engineering, 2009, 56, 1009-1012.	1.7	13
133	Validation of volume continuity method for estimation of cross-shore swash flow velocity. Coastal Engineering, 2010, 57, 953-958.	1.7	13
134	Boundary layer dynamics in the swash zone under large-scale laboratory conditions. Coastal Engineering, 2016, 113, 47-61.	1.7	13
135	BARDEX II: Bringing the beach to the laboratory – again!. Journal of Coastal Research, 2013, 165, 1545-1550.	0.1	12
136	Beach response to consecutive extreme storms using LiDAR along the SW coast of England. Journal of Coastal Research, 2016, 75, 1052-1056.	0.1	12
137	Suspended Sediment Transport in Rip Currents on a Macrotidal Beach. Journal of Coastal Research, 2013, 165, 1880-1885.	0.1	11
138	Predicting overwash on gravel barriers. Journal of Coastal Research, 2013, 165, 1473-1478.	0.1	11
139	Observation of Wave Transformation on Macro-tidal Rocky Platforms. Journal of Coastal Research, 2016, 75, 602-606.	0.1	11
140	Impact of a headland-associated sandbank on shoreline dynamics. Geomorphology, 2020, 355, 107065.	1.1	11
141	An XBeach derived parametric expression for headland bypassing. Coastal Engineering, 2021, 165, 103860.	1.7	11
142	Role of Future Reef Growth on Morphological Response of Coral Reef Islands to Sea‣evel Rise. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005749.	1.0	10
143	Coastal dune dynamics in embayed settings with sea-level rise – Examples from the exposed and macrotidal north coast of SW England. Marine Geology, 2022, 450, 106853.	0.9	10
144	Synthetic Imagery for the Automated Detection of Rip Currents. Journal of Coastal Research, 2016, 75, 912-916.	0.1	9

#	Article	IF	CITATIONS
145	Alongshore fluid motions in the swash zone of a sandy and gravel beach. Coastal Engineering, 2011, 58, 690-705.	1.7	8
146	Observations of bedforms on a dissipative macrotidal beach. Ocean Dynamics, 2014, 64, 225-239.	0.9	8
147	Storm-driven cusp behaviour on a high energy gravel beach. Journal of Coastal Research, 2014, 70, 645-650.	0.1	8
148	Wave, Tide and Topographical Controls on Headland Sand Bypassing. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017053.	1.0	8
149	Coastal sand barrier hydrology – observations from the BARDEX II prototype-scale laboratory experiment. Journal of Coastal Research, 2013, 165, 1886-1891.	0.1	7
150	Vertical structure of near-bed cross-shore flow velocities in the swash zone of a dissipative beach. Continental Shelf Research, 2015, 101, 98-108.	0.9	7
151	Preface: Monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate. Natural Hazards and Earth System Sciences, 2016, 16, 463-467.	1.5	7
152	The extreme 2013/14 winter storms: Regional patterns in multi-annual beach recovery. Geomorphology, 2021, 389, 107828.	1.1	7
153	Sediment transport dynamics in the swash zone under large-scale laboratory conditions. Continental Shelf Research, 2016, 120, 1-13.	0.9	6
154	Field Observations of Sediment Fluxes in the Inner-Surf and Swash Zones. Journal of Coastal Research, 2009, 254, 991-1001.	0.1	5
155	Sensitivity analysis of the methodology for quantifying cliff erosion using airborne LiDAR – examples from Cornwall, UK Journal of Coastal Research, 2013, 65, 470-475.	0.1	5
156	Spatio-temporal Variability in the Tipping Points of a Coastal Defense. Journal of Coastal Research, 2016, 75, 1042-1046.	0.1	5
157	The role of alongshore flows on inner surf and swash zone hydrodynamics on a dissipative beach. Continental Shelf Research, 2020, 201, 104134.	0.9	5
158	Emergent coastal behaviour results in extreme dune erosion decoupled from hydrodynamic forcing. Marine Geology, 2021, 442, 106667.	0.9	5
159	Infiltration and Exfiltration on a Steep Gravel Beach: Implications for Sediment Transport. , 2006, , 1.		4
160	Testing numerical hydrodynamic and morphodynamic models against BARDEX II Experiment data sets. Journal of Coastal Research, 2013, 165, 1745-1750.	0.1	4
161	Megaripple dynamics on a dissipative sandy beach. Journal of Coastal Research, 2014, 70, 187-192.	0.1	4
162	Bedform Dynamics in a Rip Current. Journal of Coastal Research, 2014, 70, 700-705.	0.1	4

#	Article	IF	CITATIONS
163	SWASH ZONE MORPHODYNAMICS OF COARSE-GRAINED BEACHES DURING ENERGETIC WAVE CONDITIONS. Coastal Engineering Proceedings, 2015, 1, 35.	0.1	4
164	Correcting wave reflection estimates in the coastal zone. Coastal Engineering, 2017, 119, 65-71.	1.7	4
165	Physical Modelling of Reef Platform Hydrodynamics. Journal of Coastal Research, 2018, 85, 491-495.	0.1	4
166	High-resolution, large-scale laboratory measurements of a sandy beach and dynamic cobble berm revetment. Scientific Data, 2021, 8, 22.	2.4	4
167	MULTI-ANNUAL SAND AND GRAVEL BEACH RESPONSE TO STORMS IN THE SOUTHWEST OF ENGLAND. , 2015, , .		4
168	Field Measurements of Flow Velocities on a Dissipative and Reflective Beach — Implications for Swash Sediment Transport. , 2006, , 1.		3
169	Accurate Estimation of Wave Reflection on a High Energy, Dissipative Beach. Journal of Coastal Research, 2016, 75, 877-881.	0.1	3
170	Predicting Dominance of Sand Transport by Waves, Tides, and Their Interactions on Sandy Continental Shelves. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017200.	1.0	3
171	AN INTEGRATIVE APPROACH TO INVESTIGATING THE ROLE OF SWASH IN SHORELINE CHANGE. , 2003, , .		3
172	CONTRASTING STORM IMPACTS ON GRAVEL BEACHES – EXAMPLES FROM SOUTH ENGLAND. Coastal Engineering Proceedings, 2012, 1, 84.	0.1	3
173	78. STORM RESPONSE AND BEACH ROTATION ON A GRAVEL BEACH. , 2009, , .		3
174	27. FIELD MEASUREMENTS OF NET SEDIMENT FLUX FROM INDIVIDUAL SWASHES ON A SANDY BEACH. , 2009, , .		2
175	Can standard energetics models be used to predict net cross-shore sediment flux at the beach face?. Australian Journal of Civil Engineering, 2011, 9, 19-34.	0.6	2
176	Sandy Beach Morphodynamics Journal of Coastal Research, 2021, 37, .	0.1	2
177	MODELING RESPONSE OF CORAL REEF ISLANDS TO SEA-LEVEL RISE. , 2019, , .		2
178	GRAVEL BEACH CROSS- AND ALONGSHORE RESPONSE TO AN EXTREME EVENT: BEACH LENGTH AND HEADLAND PROXIMITY CONTROLS. , 2019, , .		2
179	UK STORMS 2014: GRAVEL BEACH RESPONSE. , 2015, , .		2
180	REGIONAL VARIABILITY IN ATLANTIC STORM RESPONSE ALONG THE SOUTHWEST COAST OF ENGLAND. , 2015, , .		2

Gerd Masselink

#	Article	IF	CITATIONS
181	HIGH VOLUME SEDIMENT TRANSPORT AND ITS IMPLICATIONS FOR RECREATIONAL BEACH RISK. , 2009, , .		2
182	GROUNDWATER SEEPAGE BETWEEN A GRAVEL BARRIER BEACH AND A FRESHWATER LAGOON. , 2009, , .		2
183	EXPLORING REEF ISLAND MORPHODYNAMICS: A PHYSICAL MODELLING METHODOLOGY. , 2019, , .		1
184	LONGSHORE SEDIMENT TRANSPORT DUE TO SEA BREEZES: AN IMPOUNDMENT STUDY. , 2003, , .		1
185	MONITORING STORM IMPACTS ON A GRAVEL BEACH USING THE ARGUS VIDEO SYSTEM. , 2009, , .		1
186	FIELD MEASUREMENTS OF SHEET FLOW SEDIMENT TRANSPORT IN THE SWASH ZONE. Coastal Engineering Proceedings, 2012, 1, 78.	0.1	1
187	COMPREHENSIVE STUDY OF SWASH-ZONE HYDRODYNAMICS AND SEDIMENT TRANSPORT. Coastal Engineering Proceedings, 2012, 1, 1.	0.1	1
188	DEVELOPMENT OF A REAL-TIME, REGIONAL COASTAL FLOOD WARNING SYSTEM FOR SOUTHWEST ENGLAND. , 2019, , .		1
189	A 15-year partnership between UK coastal scientists and the international beach lifeguard community. Continental Shelf Research, 2022, 241, 104732.	0.9	1
190	Sea Breeze Effects on Nearshore Coastal Processes. , 1997, , 4200.		0
191	Sea Breeze Climatology and Nearshore Processes along the Perth Metropolitan Coastline, Western Australia. , 1999, , 3165.		0
192	Field Observations of Step Dynamics on a Macrotidal Gravel Beach. , 2007, , .		0
193	The Coast of Australia - By Andrew D Short and Colin D Woodroffe. Geographical Journal, 2010, 176, 376-377.	1.6	0
194	Holocene book review: Simon K. Haslett Coastal systems (2nd Edition) Abingdon: Routledge, 2009, 240 pp. £23.99, paperback, ISBN 978 0 415 44060 8. Holocene, 2010, 20, 1005-1006.	0.9	0
195	3D BEACH RESPONSE TO ENERGETIC WAVE CLIMATE, CORNWALL, UK. , 2011, , .		0
196	PROPAGATION AND DISSIPATION OF INFRAGRAVITY WAVES ON A DISSIPATIVE BEACH WITH ENERGETIC WAVE FORCING. , 2015, , .		0
197	Modelling regional and local-scale larval seeding strategies for abalone (H. midae) ranching in South Africa. Aquaculture, 2021, 540, 736668.	1.7	0
198	THE VARIATION UNDER DIFFERENT CONDITIONS OF THE INFLUENCE OF IN-EXFILTRATION ON SWASH-ZONE SEDIMENT TRANSPORT. , 2005, , .		0

#	Article	IF	CITATIONS
199	FIELD MEASUREMENTS OF VELOCITY MOMENT SHAPE FUNCTIONS (THE X-SHORE PROJECT). , 2007, , .		0
200	GRANULAR PROPERTIES FROM DIGITAL IMAGES OF SEDIMENT: IMPLICATIONS FOR COASTAL SEDIMENT TRANSPORT MODELLING. , 2009, , .		0
201	FIELD INVESTIGATIONS OF WAVE RIPPLE DYNAMICS IN THE SHALLOW NEARSHORE OF TWO SANDY BEACHES. , 2009, , .		0
202	FIELD MEASUREMENTS OF BEDFORMS IN A RIP CHANNEL ON A MACRO-TIDAL BEACH. Coastal Engineering Proceedings, 2012, 1, 93.	0.1	0
203	MODELING GRAVEL BARRIER RESILIENCE DURING STORMS WITH XBEACH-G: THE ROLE OF INFILTRATION. , 2015, , .		0
204	Un indice climatique contrÃ1ant les conditions de vagues en hiver le long de la côte atlantique européenne : WEPA (West Europe Pressure Anomaly). , 0, , .		0
205	Wave Refraction Diagrams. Encyclopedia of Earth Sciences Series, 2019, , 1867-1872.	0.1	0
206	ATMOSPHERIC CLIMATE CONTROL OF DIRECTIONAL WAVES IN THE UNITED KINGDOM AND IRELAND. , 2019, , .		0
207	CLIMATE CONTROL ON WINTER WAVE ACTIVITY IN THE NORTHEAST ATLANTIC AND IMPACTS ON BEACH EROSION AND RECOVERY ALONG THE WEST COAST OF EUROPE. , 2019, , .		0
208	ROTATIONAL BEACH RESPONSE TO DIRECTIONALLY BI-MODAL WAVE CLIMATES. , 2019, , .		0
209	CIRCULATION AND SEDIMENT FLUXES ON A MACROTIDAL, EXPOSED AND EMBAYED COASTLINE. , 2019, , .		0
210	†There's Camels on the Beach!' The Nine Mile Beach, Central Queensland Macrotidal Beach Experiment. Journal of Coastal Research, 2020, 101, 246.	0.1	0
211	Can coral reef islands survive sea level rise?. TheScienceBreaker, 2020, 06, .	0.0	Ο