Wim Fias

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5166561/publications.pdf
Version: 2024-02-01
The Importance of Magnitude Information in Numerical Processing: Evidence from the SNARC Effect.Mathematical Cognition, 1996, 2, 95-110.
1 The Importance of Magnitude Information in Numerical Processing: Evidence from the SNARC Effect.
1 Mathematical Cognition, 1996, 2, 95-110.
0.4

436
1.1

432

8 Brain networks under attack: robustness properties and the impact of lesions. Brain, 2016, 139,

Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive	3.3
Brain Research, 2001, 12, 415-423.	195

Automatic response activation of implicit spatial information: Evidence from the SNARC effect. Acta
Psychologica, 2006, 122, 221-233.

A model of exact small-number representation. Psychonomic Bulletin and Review, 2005, 12, 66-80.	1.4	
12	Physical activity to improve cognition in older adults: can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 2018, 15, 63.	2.0
13	181	
Processing of Abstract Ordinal Knowledge in the Horizontal Segment of the Intraparietal Sulcus. Journal of Neuroscience, 2007, 27, 8952-8956.	1.7	

14 Verbal-spatial and visuospatial coding of numberâ€"space interactions.. Journal of Experimental
14

Overlapping Neural Systems Represent Cognitive Effort and Reward Anticipation. PLoS ONE, 2014, 9,
1.1

Research, 2001, 65, 250-259.

19	Numbers are associated with different types of spatial information depending on the task. Cognition, 2009, 113, 248-253.	1.1	127
20	Priming reveals differential coding of symbolic and non-symbolic quantities. Cognition, 2007, 105, 380-394.	1.1	125
21	Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. Neurolmage, 2017, 146, 376-394.	2.1	122
22	Oculomotor Bias Induced by Number Perception. Experimental Psychology, 2004, 51, 91-97.	0.3	120
23	Interacting neighbors: A connectionist model of retrieval in single-digit multiplication. Memory and Cognition, 2005, 33, 1-16.	0.9	119
24	Further Evidence that the SNARC Effect is Processed Along a Dual-Route Architecture. Experimental Psychology, 2006, 53, 58-68.	0.3	116
25	The Whorfian hypothesis and numerical cognition: is 'twenty-four' processed in the same way as 'four-and-twenty'?. Cognition, 1998, 66, 51-77.	1.1	115
26	Spatial Attention Interacts With Serial-Order Retrieval From Verbal Working Memory. Psychological Science, 2013, 24, 1854-1859.	1.8	112
27	Spontaneous and intentional trait inferences recruit a common mentalizing network to a different degree: Spontaneous inferences activate only its core areas. Social Neuroscience, 2011, 6, 123-138.	0.7	110
28	Outcome expectancy and not accuracy determines posterror slowing: ERP support. Cognitive, Affective and Behavioral Neuroscience, 2010, 10, 270-278.	1.0	108
29	Number Processing Pathways in Human Parietal Cortex. Cerebral Cortex, 2010, 20, 77-88.	1.6	108
30	Multiple components of developmental dyscalculia. Trends in Neuroscience and Education, 2013, 2, 43-47.	1.5	108
31	Semantic priming in number naming. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2002, 55, 1127-1139.	2.3	105

32 Hippocampal contribution to early and later stages of implicit motor sequence learning. Experimental

Inconsistencies in spontaneous and intentional trait inferences. Social Cognitive and Affective
Neuroscience, 2012, 7, 937-950.

Impaired visuo-motor sequence learning in Developmental Coordination Disorder. Research in Developmental Disabilities, 2011, 32, 749-756.

A hippocampalâ€"parietal network for learning an ordered sequence. Neurolmage, 2008, 40, 333-341.
2.1

Attention Supports Verbal Short-Term Memory via Competition between Dorsal and Ventral Attention Networks. Cerebral Cortex, 2012, 22, 1086-1097.

Semantic interference effects on naming using a postcue procedure: Tapping the links between
41 semantics and phonology with pictures and words.. Journal of Experimental Psychology: Learning Memory and Cognition, 1995, 21, 961-980.

42 The neural representation of extensively trained ordered sequences. Neurolmage, 2009, 47, 367-375.
2.1

Towards a common processing architecture underlying Simon and SNARC effects. European Journal of Cognitive Psychology, 2005, 17, 659-673.

About the influence of the presentation format on arithmetical-fact retrieval processes. Cognition, 1997, 63, 335-374.

How Does Working Memory Enable Number-Induced Spatial Biases?. Frontiers in Psychology, 2016, 7,
977.

Shared spatial representations for numbers and space: The reversal of the SNARC and the Simon
effects.. Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 1197-1207.
0.7

61
Dissociating contributions of ACC and vmPFC in reward prediction, outcome, and choice.
Neuropsychologia, 2014, 59, 112-123.

Are Arabic numerals processed as pictures in a Stroop interference task?. Psychological Research, 2001, 65, 242-249.

Anticipatory processes in brain state switching â€" Evidence from a novel cued-switching task
implicating default mode and salience networks. Neurolmage, 2014, 98, 359-365.

Distinct representations of numerical and non-numerical order in the human intraparietal sulcus revealed by multivariate pattern recognition. Neurolmage, 2011, 56, 674-680.

Is developmental coordination disorder a motor imagery deficit?. Journal of Clinical and Experimental
Neuropsychology, 2009, 31, 720-730.

Stages of Nonsymbolic Number Processing in Occipitoparietal Cortex Disentangled by fMRI Adaptation.
Journal of Neuroscience, 2011, 31, 7168-7173.

The impact of verbal working memory on numberâ€"space associations.. Journal of Experimental
Psychology: Learning Memory and Cognition, 2014, 40, 976-986.
0.7

55
Psychology: Learning Memory and Cognition, 2014, 40, 976-986.

```
5 5 ~ T h e ~ N e u r a l ~ B a s i s ~ o f ~ I m p l i c i t ~ P e r c e p t u a l ~ S e q u e n c e ~ L e a r n i n g . ~ F r o n t i e r s ~ i n ~ H u m a n ~ N e u r o s c i e n c e , ~ 2 0 1 1 , ~ 5 ,
137.
\(55 \quad 137\).
``` effects. Journal of Experimental Child Psychology, 2006, 94, 43-56.
The representation of multiplication facts: Developmental changes in the problem size, five, and tie

The Heterogeneous Nature of Numberâ€"Space Interactions. Frontiers in Human Neuroscience, 2011, 5,
1.0 182.

58 Non-spatial neglect for the mental number line. Neuropsychologia, 2011, 49, 2570-2583.
59 Sixty-four or four-and-sixty? The influence of language and working memory on children's number
transcoding. Frontiers in Psychology, 2014, 5, 313.
1.1 transcoding. Frontiers in Psychology, 2014, 5, 313.
1.5

45
60 Traits are represented in the medial prefrontal cortex: an fMRI adaptation study. Social Cognitive and Affective Neuroscience, 2014, 9, 1185-1192.
Common Neural Substrates for Ordinal Representation in Short-Term Memory, Numerical and
Alphabetical Cognition. PLoS ONE, 2014, 9, e92049.
1.1
42

62 Single-Trial ERP Component Analysis Using a Spatiotemporal LCMV Beamformer. IEEE Transactions on Biomedical Engineering, 2016, 63, 55-66.
2.5

42
```

63 The temporary nature of numberâ€"space interactions.. Canadian Journal of Experimental Psychology,
2016, 70, 33-40.

```
0.7

41

64 Errors and Conflict at the Task Level and the Response Level. Journal of Neuroscience, 2011, 31, 1366-1374.
1.7

40
Similarity and Rules United: Similarityâ€ \(65 \quad\)\begin{tabular}{l}
and Ruleâ€Based Processing in a Single Neural Network. Cognitive
\end{tabular}
\begin{tabular}{l}
Science, 2009, 33, 243-259.
\end{tabular}

Science, 2009, 33, 243-259.
39

66 Picture novelty attenuates semantic interference and modulates concomitant neural activity in the anterior cingulate cortex and the locus coeruleus. Neurolmage, 2013, 74, 179-187.
2.1

39

67 Passive hand movements disrupt adultsâ€ \({ }^{T M}\) counting strategies. Frontiers in Psychology, 2011, \(2,201\).
1.1

38

68 The Quantitative Nature of a Visual Task Differentiates between Ventral and Dorsal Stream. Journal of Cognitive Neuroscience, 2002, 14, 646-658.
1.1

37
69

Journal of Experimental Child Psychology, 2019, 182, 38-60.

The internal anticipation of sensory action effects: when action induces FFA and PPA activity.

Science, 2017, 26, 429-433.
Cross-lingual numerical distance priming with second-language number words in native- to
third-language number word translation. Quarterly Journal of Experimental Psychology, 2008, 61,
\(1281-1290\).

The development of the SNARC effect: Evidence for early verbal coding. Journal of Experimental Child

Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval.

Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval.

Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. \(0.7 \quad 29\) \(0.7 \quad 29\) \(0.7 \quad 29\)
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval.
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval.
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. 1.1 1.1 1.1 29 29 29
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval.
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval.
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad\) Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. 1.2 1.2 1.2 27 27 27
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad \begin{aligned} & \text { Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. }\end{aligned}\)
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad \begin{aligned} & \text { Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. }\end{aligned}\)
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049.
\(80 \quad \begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
\(81 \quad \begin{aligned} & \text { Changing your mind before it is too late: The electrophysiological correlates of online error } \\ & \text { correction during response selection. Psychophysiology, 2014, 51, 746-760. }\end{aligned}\)
\(82 \quad \begin{aligned} & \text { Serial Position Markers in Space: Visuospatial Priming of Serial Order Working Memory Retrieval. }\end{aligned}\) 1.1 1.1 1.1 27 27 27
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049. R \(\begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049. R \(\begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)
Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and
neuroimaging data. Neuropsychologia, 2013, 51, 1040-1049. R \(\begin{aligned} & \text { Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response } \\ & \text { ERPs. PLoS ONE, 2014, 9, e87650. }\end{aligned}\)0.731
83 Constructions of Neuroscience in Early Childhood Education. , 0, , 270.522
\(84 \quad \begin{aligned} & \text { Symbolic } \\ & 539-554 .\end{aligned}\)
1.8 22
Correlation between individual
Biology, 2014, 24, R265-R266.A longitudinal study of childrenâ \(\epsilon^{\mathrm{TM}_{s}}\) performance on simple multiplication and division problems..1.221
Developmental Psychology, 2009, 45, 1480-1496. 86Metacognition across domains: Is the association between arithmetic and metacognitive monitoringdomain-specific?. PLoS ONE, 2020, 15, e0229932.1.121Error Adaptation in Mental Arithmetic. Quarterly Journal of Experimental Psychology, 2012, 65,1059-1067.How Monitoring Otherâ€ \(€^{T M_{S}}\) Actions Influences Oneâ \(€^{T M}{ }_{S}\) Own Performance. Experimental Psychology, 2011 ,58, 499-508.

91 Effect of the static magnetic field of the MR-scanner on ERPs: Evaluation of visual, cognitive and

Are Individual Differences in Arithmetic Fact Retrieval in Children Related to Inhibition?. Frontiers in Psychology, 2016, 7, 825.
â€œl can write seven but I canâ€ \({ }^{T M} t\) say itâ€! a case of domain-specific phonological output deficit for numbers. Neuropsychologia, 2005, 43, 1177-1188.

The neural basis of metacognitive monitoring during arithmetic in the developing brain. Human Brain Mapping, 2020, 41, 4562-4573.

Spatial Attention in Serial Order Working Memory: An EEG Study. Cerebral Cortex, 2021, 31, 2482-2493.
1.6

Unsigned value prediction-error modulates the motor system in absence of choice. Neurolmage, 2015,
122, 73-79.

Roman Digit Naming. Experimental Psychology, 2008, 55, 73-81.
0.3

13

98 The mental number line: exact and approximate. Trends in Cognitive Sciences, 2004, 8, 447-448.

Aversive Conditioning under Conditions of Restricted Awareness: Effects on Spatial Cueing.
Quarterly Journal of Experimental Psychology, 2010, 63, 2336-2358.

ERP Response Unveils Effect of Second Language Manipulation on First Language Processing. PLoS
ONE, 2016, 11, e0167194.

101 Ancestral Mental Number Lines: What Is the Evidence?. Cognitive Science, 2017, 41, 2262-2266.
0.8

12

102 Opposite effects of working memory on subjective visibility and priming.. Journal of Experimental
Psychology: Learning Memory and Cognition, 2013, 39, 1959-1965.
0.7

10

103 Bidirectionality in Synesthesia. Experimental Psychology, 2010, 57, 178-184.
0.3

10

Negative Priming with Numbers: No Evidence for a Semantic Locus. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2005, 58, 1153-1172.
2.3

9

105 Neurocognitive Components of Mathematical Skills and Dyscalculia. , 2016, , 195-217.
9

Paying attention to working memory: Similarities in the spatial distribution of attention in mental and physical space. Psychonomic Bulletin and Review, 2016, 23, 1190-1197.
109 Asymmetric Spatial Processing Under Cognitive Load. Frontiers in Psychology, 2018, 9, 583.

1.1

8

Functionally distinct contributions of parietal cortex to a numerical landmark task: An fMRI study.
1.1 Cortex, 2019, 114, 28-40.

Do preliterate children spontaneously employ spatial coding for serial order in working memory?.
1.8

Annals of the New York Academy of Sciences, 2020, 1477, 91-99.

Repetition priming in the stop signal task: The electrophysiology of sequential effects of stopping.
0.7

Neuropsychologia, 2012, 50, 2860-2868.

Eye-movements reveal the serial position of the attended item in verbal working memory. Psychonomic
Bulletin and Review, 2022, 29, 530-540.

Bilingualism and Numeric Cognition. Psychologica Belgica, 2020, 38, 231.
1.0

7

Too anxious to be confident? A panel longitudinal study into the interplay of mathematics anxiety and
115 metacognitive monitoring in arithmetic achievement.. Journal of Educational Psychology, 2021, 113, 1550-1564.

Does contingency awareness mediate the influence of emotional learning on the cueing of visual attention?. Psychological Research, 2009, 73, 107-113.

Preparing or Executing the Wrong Task: The Influence on Switch Effects. Quarterly Journal of
Experimental Psychology, 2012, 65, 1172-1184.
0.6

6

Right-sided representational neglect after left brain damage inÂa case without visuospatial working memory deficits. Cortex, 2013, 49, 2283-2293.
1.1

6
1.2
6
Impaired Processing of Serial Order Determines Working Memory Impairments in Alzheimerâ \(€^{\mathrm{TM}}\) s Disease.
119 Impaired Processing of Serial Order Determines Work

120 Which Space for Numbers?. , 2018, , 233-242.
6

121 Arithmetic learning in children: An fMRI training study. Neuropsychologia, 2022, 169, 108183.

Comparing color-word and picture-word Stroop-like effects: A test of the Glaser and Glaser (1989) model. Psychological Research, 1994, 56, 293-300.
\(1.0 \quad 5\)

Bilateral Processing of Redundant Information: the Influence of Stimulus Notation and Processing
Speed in Number Comparison. Cortex, 2007, 43, 207-218.
1.1

5

124 Offline and online automatic number comparison. Psychological Research, 2008, 72, 347-352.
1.0

5

The Size of the Simon Effect Depends on the Nature of the Relevant Task. Experimental Psychology,
2007, 54, 202-214.
0.3

5
Task switching and across-trial distance priming are independent. European Journal of Cognitive
Psychology, 2007, 19, 1-16.

What counts in estimation? The nature of the preverbal system. Progress in Brain Research, 2016, 227, 29-51.

The Graded Fate of Unattended Stimulus Representations in Visuospatial Working Memory. Frontiers
in Psychology, 2019, 10, 374.

Disentangling Neural Sources of Problem Size and Interference Effects in Multiplication. Journal of Cognitive Neuroscience, 2019, 31, 453-467.

The Representation of Multiplication and Division Facts in Memory. Experimental Psychology, 2011, 58,
312-323.

From Counting to Retrieving: Neural Networks Underlying Alphabet Arithmetic Learning. Journal of Cognitive Neuroscience, 2021, 34, 16-33.

Spatialization in working memory and its relation to math anxiety. Annals of the New York Academy of Sciences, 2022, 1512, 192-202.

How serially organized working memory information interacts with timing. Psychological Research, 2017, 81, 1255-1263.

Distinguishing between cognitive explanations of the problem size effect in mental arithmetic via representational similarity analysis of fMRI data. Neuropsychologia, 2019, 132, 107120.

Abstract representations of number: What interactions with number form do not prove and priming effects do. Behavioral and Brain Sciences, 2009, 32, 351-352.

Speaking in numbers as a transitional phase between mutism and Wernicke's aphasia: A report of three
137 cases. Aphasiology, 2012, 26, 917-932.

Editorial: Turning the Mind's Eye Inward: The Interplay Between Selective Attention and Working Memory. Frontiers in Human Neuroscience, 2015, 9, 616.

Reactive and proactive control in arithmetical strategy selection. Journal of Numerical Cognition, 2017, 3, 598-619.

Neural Patterns in Parietal Cortex and Hippocampus Distinguish Retrieval of Start versus End Positions in Working Memory. Journal of Cognitive Neuroscience, 2022, , 1-16.

Performance monitoring at the task and the response level. Reviews in the Neurosciences, 2011, 22, 575-81.

142 Category specific recall in acute stroke: a case with letter speech. Neurocase, 2019, 25, 251-258.

Statistics Anxiety in Flanders: Exploring Its Level, Antecedents, and Performance Impact Across
147 Professional and Academic Bachelor Programs in Psychology. International Electronic Journal of
Elementary Education, 0, . .

148 Title is missing!. , 2020, 15, e0229932.

149 Title is missing!. , 2020, 15, e0229932.

150 Title is missing!. , 2020, 15, e0229932.```

