
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5166376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351, 141-144.	12.6	1,594
2	Origin of low thermal conductivity in SnSe. Physical Review B, 2016, 94, .	3.2	287
3	Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. Journal of the American Chemical Society, 2016, 138, 2366-2373.	13.7	269
4	Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy and Environmental Science, 2015, 8, 3298-3312.	30.8	268
5	Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. Journal of the European Ceramic Society, 2011, 31, 1881-1888.	5.7	164
6	Integrating Band Structure Engineering with All‣cale Hierarchical Structuring for High Thermoelectric Performance in PbTe System. Advanced Energy Materials, 2017, 7, 1601450.	19.5	157
7	Multiple Converged Conduction Bands in K ₂ Bi ₈ Se ₁₃ : A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. Journal of the American Chemical Society, 2016, 138, 16364-16371.	13.7	130
8	Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings from Nanostructured YSZ. Journal of Thermal Spray Technology, 2010, 19, 1186-1194.	3.1	126
9	High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system. Thin Solid Films, 2008, 516, 5732-5735.	1.8	118
10	Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy and Environmental Science, 2017, 10, 2420-2431.	30.8	116
11	Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings. Journal of the European Ceramic Society, 2014, 34, 1255-1263.	5.7	113
12	Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Advances, 2016, 6, 98216-98220.	3.6	107
13	The thermal cycling behavior of Lanthanum–Cerium Oxide thermal barrier coating prepared by EB–PVD. Surface and Coatings Technology, 2006, 200, 5113-5118.	4.8	104
14	Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration. Journal of the European Ceramic Society, 2014, 34, 2553-2561.	5.7	103
15	Thermal shock resistance and mechanical properties of La2Ce2O7 thermal barrier coatings with segmented structure. Ceramics International, 2009, 35, 2639-2644.	4.8	97
16	Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200°C. Corrosion Science, 2014, 88, 197-208.	6.6	83
17	On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions. Scripta Materialia, 2006, 54, 1505-1508.	5.2	82
18	Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 °C. Corrosion Science, 2011, 53, 2228-2232.	6.6	81

#	Article	IF	CITATIONS
19	Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy. Corrosion Science, 2010, 52, 1440-1446.	6.6	77
20	Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy. Corrosion Science, 2011, 53, 2721-2727.	6.6	66
21	Microstructures of Yttria-Stabilized Zirconia Coatings by Plasma Spray-Physical Vapor Deposition. Journal of Thermal Spray Technology, 2015, 24, 534-541.	3.1	65
22	Heat treatment of nanostructured thermal barrier coating. Ceramics International, 2007, 33, 1075-1081.	4.8	63
23	Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress in Natural Science: Materials International, 2012, 22, 461-467.	4.4	63
24	Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition. Ceramics International, 2016, 42, 5530-5536.	4.8	58
25	Thermo-Physical Properties and Thermal Shock Resistance of Segmented La2Ce2O7/YSZ Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2009, 18, 665-671.	3.1	55
26	Diffusion barrier behaviors of (Ru,Ni)Al/NiAl coatings on Ni-based superalloy substrate. Intermetallics, 2011, 19, 191-195.	3.9	53
27	The role of Dy and Hf doping on oxidation behavior of two-phase (γ′ + β) Ni–Al alloys. Corrosion Science, 2015, 98, 699-707.	6.6	53
28	Structural evolution and thermal conductivities of (Gd1â^'xYbx)2Zr2O7 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings. Ceramics International, 2015, 41, 12621-12625.	4.8	53
29	Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame. Surface and Coatings Technology, 2011, 205, 4291-4298.	4.8	52
30	Cyclic oxidation and diffusion barrier behaviors of oxides dispersed NiCoCrAlY coatings. Journal of Alloys and Compounds, 2010, 502, 411-416.	5.5	51
31	High-temperature oxidation and hot-corrosion behaviour of EB-PVD β-NiAlDy coatings. Corrosion Science, 2011, 53, 1050-1059.	6.6	50
32	Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys. Corrosion Science, 2017, 129, 192-204.	6.6	50
33	Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD. Applied Surface Science, 2013, 274, 144-150.	6.1	49
34	First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model. Chinese Physics B, 2012, 21, 109102.	1.4	48
35	High-temperature oxidation behavior of minor Hf doped NiAl alloy in dry and humid atmospheres. Corrosion Science, 2013, 75, 337-344.	6.6	48
36	Thermo-physical and thermal cycling properties of plasma-sprayed BaLa2Ti3O10 coating as potential thermal barrier materials. Surface and Coatings Technology, 2009, 204, 691-696.	4.8	47

#	Article	IF	CITATIONS
37	Hot-corrosion behavior of a La2Ce2O7/YSZ thermal barrier coating exposed to Na2SO4+V2O5 or V2O5 salt at 900°C. Ceramics International, 2015, 41, 6604-6609.	4.8	47
38	Effect of bond coat surface roughness on the thermal cyclic behavior of thermal barrier coatings. Surface and Coatings Technology, 2006, 201, 649-653.	4.8	44
39	Precipitation phases in the nickel-based superalloy DZ 125 with YSZ/CoCrAlY thermal barrier coating. Journal of Alloys and Compounds, 2011, 509, 8542-8548.	5.5	44
40	Effect of Sintering on Thermal Conductivity and Thermal Barrier Effects of Thermal Barrier Coatings. Chinese Journal of Aeronautics, 2012, 25, 811-816.	5.3	43
41	Investigation on hot-fatigue behaviors of gradient thermal barrier coatings by EB-PVD. Surface and Coatings Technology, 2001, 148, 110-116.	4.8	42
42	Isothermal oxidation behaviour of EB-PVD MCrAlY bond coat. Vacuum, 2007, 81, 947-952.	3.5	41
43	Evaluation of plasma sprayed YSZ thermal barrier coatings with the CMAS deposits infiltration using impedance spectroscopy. Progress in Natural Science: Materials International, 2012, 22, 40-47.	4.4	41
44	High-temperature oxidation behavior of β-NiAl with various reactive element dopants in dry and humid atmospheres. Corrosion Science, 2014, 83, 335-342.	6.6	40
45	Effects of Dy on the adherence of Al2O3/NiAl interface: A combined first-principles and experimental studies. Corrosion Science, 2013, 66, 59-66.	6.6	39
46	The effect of silicon on the oxidation behavior of NiAlHf coating system. Applied Surface Science, 2013, 271, 311-316.	6.1	37
47	High temperature tensile behavior of a thin-walled Ni based single-crystal superalloy with cooling hole: In-situ experiment and finite element calculation. Journal of Alloys and Compounds, 2019, 782, 619-631.	5.5	37
48	The role of Cr and Si in affecting high-temperature oxidation behaviour of minor Dy doped NiAl alloys. Corrosion Science, 2013, 77, 322-333.	6.6	36
49	Synergistic effect of reactive element co-doping in two-phase (γ' + β) Ni-Al alloys. Corrosion Science, 2017, 120, 130-138.	6.6	36
50	Effects of Dy on cyclic oxidation resistance of NiAl alloy. Transactions of Nonferrous Metals Society of China, 2009, 19, 1185-1189.	4.2	35
51	Improved alumina scale adhesion of electron beam physical vapor deposited Dy/Hf-doped β-NiAl coatings. Applied Surface Science, 2013, 283, 513-520.	6.1	33
52	Thermal cycling behavior of (Gd0.9Yb0.1)2Zr2O7/8YSZ gradient thermal barrier coatings deposited on Hf-doped NiAl bond coat by EB-PVD. Surface and Coatings Technology, 2014, 258, 950-955.	4.8	31
53	Improved 1200 °C stress rupture property of single crystal superalloys by γ′-forming elements addition. Scripta Materialia, 2018, 147, 21-26.	5.2	31
54	Ruddlesden–Popper structured BaLa2Ti3O10, a highly anisotropic material for thermal barrier coatings. Ceramics International, 2012, 38, 4345-4352.	4.8	30

#	Article	IF	CITATIONS
55	Oxidation and microstructure evolution of Al–Si coated Ni3Al based single crystal superalloy with high Mo content. Applied Surface Science, 2015, 325, 20-26.	6.1	30
56	Effect of thermal stability of γ′ phase on the recrystallization behaviors of Ni-based single crystal superalloys. Materials and Design, 2017, 130, 69-82.	7.0	29
57	Fabrication of WCp/NiBSi metal matrix composite by electron beam melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 320-323.	5.6	28
58	A comparative study of four modified Al coatings on Ni3Al-based single crystal superalloy. Progress in Natural Science: Materials International, 2011, 21, 496-505.	4.4	27
59	Oxidation and diffusion barrier behaviors of double-layer NiCoCrAlY coatings produced by plasma activated EB-PVD. Surface and Coatings Technology, 2011, 205, 4658-4664.	4.8	27
60	Dislocation network with pair-coupling structure in {111} γ/γ′ interface of Ni-based single crystal superalloy. Scientific Reports, 2016, 6, 29941.	3.3	26
61	Microstructure of oxides in thermal barrier coatings grown under dry/humid atmosphere. Corrosion Science, 2011, 53, 2630-2635.	6.6	25
62	Effect of withdrawal rate on microstructure and lattice misfit of a Ni3Al based single crystal superalloy. Journal of Alloys and Compounds, 2014, 592, 164-169.	5.5	25
63	Thermal barrier coatings with (Al2O3–Y2O3)/(Pt or Pt–Au) composite bond coat and 8YSZ top coat on Ni-based superalloy. Applied Surface Science, 2013, 286, 298-305.	6.1	24
64	Evolutions of microstructure and lattice misfit in a γ′-rich Ni-based superalloy during ultra-high temperature thermal cycle. Intermetallics, 2018, 99, 18-26.	3.9	23
65	Improved oxidation resistance and diffusion barrier behaviors of gradient oxide dispersed NiCoCrAlY coatings on superalloy. Vacuum, 2010, 85, 627-633.	3.5	22
66	Influence of solidification history on precipitation behavior of TCP phase in a completely heat-treated Ni3Al based single crystal superalloy during thermal exposure. Journal of Alloys and Compounds, 2017, 722, 740-745.	5.5	22
67	Influence of temperature on the lattice misfit and elastic moduli of a Ni based single crystal superalloy with high volume fraction of $\hat{I}^3 \hat{a} \in \hat{I}^2$ phase. Materials Characterization, 2018, 142, 27-38.	4.4	22
68	CYCLIC OXIDATION BEHAVIORS OF EB-PVD Dy DOPED β- NiAl COATINGS AT 1100°C. International Journal of Modern Physics B, 2010, 24, 3143-3148.	2.0	21
69	Microstructural evolution of CoCrAlY bond coat on Ni-based superalloy DZ 125 at 1050°C. Surface and Coatings Technology, 2011, 205, 4374-4379.	4.8	21
70	The ordering degree and thermal conductivity in the pyrochlore-type composition systems with a constant cation radius ratio. Materials Letters, 2013, 106, 119-121.	2.6	21
71	Topologically inverse microstructure in single-crystal superalloys: microstructural stability and properties at ultrahigh temperature. Materials Research Letters, 2021, 9, 497-506.	8.7	21
72	Thermal barrier coatings with two layer bond coat on intermetallic compound Ni3Al based alloy. Intermetallics, 2005, 13, 295-299.	3.9	20

#	Article	IF	CITATIONS
73	Element diffusion during fabrication of EB-PVD NiAl coating and its 1100°C isothermal oxidation behavior (II). Surface and Coatings Technology, 2007, 201, 6589-6592.	4.8	20
74	Sintering of electron beam physical vapor deposited thermal barrier coatings under flame shock. Ceramics International, 2013, 39, 5093-5102.	4.8	19
75	A novel CMASâ€resistant material based on thermodynamic equilibrium design: Apatiteâ€type Gd ₁₀ (SiO ₄) ₆ O ₃ . Journal of the American Ceramic Society, 2020, 103, 3401-3415.	3.8	19
76	Effect of substrate orientations on microstructure evolution and stability for single crystal superalloys in rapid solidification process. Materials and Design, 2017, 128, 218-230.	7.0	18
77	Influence of Water Vapor on the Cyclic-Oxidation Behavior of a Low-Pressure Plasma-Sprayed NiCrAlY Coating. Oxidation of Metals, 2004, 62, 195-206.	2.1	17
78	Influence of Yb 3+ doping on phase stability and thermophysical properties of (Y 1-x Yb x) 3 Al 5 O 12 under high temperature. Ceramics International, 2017, 43, 7153-7158.	4.8	17
79	Influence of stress and secondary orientation on the oxidation-induced dynamic recrystallization behavior of a Ni-based single crystal superalloy. Journal of Alloys and Compounds, 2017, 706, 455-460.	5.5	17
80	Inter-phase selective corrosion of γ-TiAl alloy in molten salt environment at high temperature. Progress in Natural Science: Materials International, 2011, 21, 322-329.	4.4	16
81	Microscale lamellar NiCoCrAlY coating with improved oxidation resistance. Surface and Coatings Technology, 2012, 207, 110-116.	4.8	16
82	Cyclic Oxidation Behavior of an EB-PVD CoCrAlY Coating Influenced by Substrate/coating Interdiffusion. Chinese Journal of Aeronautics, 2012, 25, 796-803.	5.3	16
83	Phase stability, microstructural and thermo-physical properties of BaLn 2 Ti 3 O 10 (Ln=Nd and Sm) ceramics. Ceramics International, 2013, 39, 6743-6749.	4.8	16
84	Study on behavior of NiAl coating with different Ni/Al ratios. Vacuum, 2013, 93, 37-44.	3.5	16
85	Improved hot-corrosion resistance of Si/Cr co-doped NiAlDy alloy in simulative sea-based engine environment. Corrosion Science, 2014, 85, 232-240.	6.6	16
86	Microstructure and cyclic oxidation behaviour of low-Pt/Dy co-doped β-NiAl coatings on single crystal (SC) superalloy. Surface and Coatings Technology, 2016, 304, 108-116.	4.8	16
87	Partitioning behavior and lattice misfit of γ/γ′ phases in Ni-based superalloys with different Mo additions. Rare Metals, 2021, 40, 920-927.	7.1	16
88	EFFECTS OF Dy ON THE MICROSTRUCTURE AND SPALLATION FAILURE OF THE ALUMINA SCALES GROWN ON NiAl . International Journal of Modern Physics B, 2010, 24, 3149-3154.	2.0	15
89	First-principles study on the site preference of Dy in B2 NiAl. Journal of Alloys and Compounds, 2010, 492, 295-299.	5.5	15
90	Microstructure and Oxidation Behavior of Modified Aluminide Coating on Ni3Al-based Single Crystal Superalloy. Chinese Journal of Aeronautics, 2012, 25, 825-830.	5.3	15

#	Article	IF	CITATIONS
91	Coating-assisted deterioration mechanism of creep resistance at a nickel-based single-crystal superalloy. Surface and Coatings Technology, 2021, 406, 126668.	4.8	15
92	Inter-diffusion and oxidation behavior in electron-beam evaporated NiAl coatings. Vacuum, 2006, 81, 329-337.	3.5	14
93	Influence of withdrawal rate on last stage solidification path of a Mo-rich Ni3Al based single crystal superalloy. Journal of Alloys and Compounds, 2015, 623, 362-366.	5.5	14
94	Effect of withdrawal rate on the microsegregation, thermophysical properties and spatial orientation of a Ni3Al based single crystal superalloy. Journal of Alloys and Compounds, 2016, 660, 159-165.	5.5	14
95	Substituting Mo for Re in equal weight for Ni based single crystal superalloy. Materialia, 2019, 6, 100278.	2.7	14
96	Effects of Shot Peening Process on Thermal Cycling Lifetime of TBCs Prepared by EB-PVD. Chinese Journal of Aeronautics, 2007, 20, 145-147.	5.3	13
97	Effects of Dy on Transient Oxidation Behavior of EB-PVD β-NiAl Coatings at Elevated Temperatures. Chinese Journal of Aeronautics, 2011, 24, 363-368.	5.3	13
98	Cyclic oxidation and interdiffusion behavior of Pt modified NiAlHfCrSi coatings on single crystal superalloy containing Mo. Surface and Coatings Technology, 2014, 259, 426-433.	4.8	13
99	Effect of different B contents on the mechanical properties and cyclic oxidation behaviour of β-NiAlDy coatings. Journal of Alloys and Compounds, 2015, 623, 83-88.	5.5	13
100	Oxidation behaviour of electron beam physical vapour deposition β-NiAlHf coatings at 1100°C in dry and humid atmospheres. Rare Metals, 2016, 35, 513-519.	7.1	13
101	New type of γ′ phase in Ni based single crystal superalloys: Its formation mechanism and strengthening effect. Materials and Design, 2018, 145, 181-195.	7.0	13
102	Design for anomalous yield in $\hat{I}^3 \hat{a} \in 2$ -strengthening superalloys. Materials and Design, 2019, 183, 108082.	7.0	13
103	Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy. Surface and Coatings Technology, 2021, 411, 127005.	4.8	12
104	Influence of thermal shock on insulation effect of nano-multilayer thermal barrier coatings. Surface and Coatings Technology, 2007, 201, 6340-6344.	4.8	11
105	Kinetics and microstructural evolution during recrystallization of a Ni3Al-based single crystal superalloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 2098-2105.	4.2	11
106	Design for 1200°C creep properties of Ni-based single crystal superalloys: Effect of γ′-forming elements and its microscopic mechanism. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142494.	5.6	11
107	Evaluation of thermal barrier coating exposed to different oxygen partial pressure environments by impedance spectroscopy. Surface and Coatings Technology, 2006, 201, 446-451.	4.8	10
108	Cyclic oxidation behavior of β-NiAlDy alloys containing varying aluminum content at 1200°C. Progress in Natural Science: Materials International, 2012, 22, 311-317.	4.4	10

#	Article	IF	CITATIONS
109	Influence of aging heat treatment on microstructure and hardness of single crystal Ni3Al-base superalloy IC21. Procedia Engineering, 2012, 27, 1081-1088.	1.2	10
110	Surface recrystallization of a Ni3Al based single crystal superalloy at different annealing temperature and blasting pressure. Rare Metals, 2012, 31, 209-214.	7.1	10
111	Thermal deformation of Y2O3 partially stabilized ZrO2 coatings by digital image correlation method. Surface and Coatings Technology, 2013, 216, 1-7.	4.8	10
112	Title is missing!. Journal of Materials Science, 2002, 37, 5333-5337.	3.7	9
113	Failure mechanism of EB-PVD thermal barrier coatings on NiAl substrate. Transactions of Nonferrous Metals Society of China, 2007, 17, 811-815.	4.2	9
114	The mechanism of thermal corrosion fatigue (TCF) on nickel-based single crystal superalloy and the corresponding structure shape effect. Corrosion Science, 2021, 179, 109142.	6.6	9
115	Deposition of TiN by plasma activated EB-PVD: Activation by thermal electron emission from molten niobium. Surface and Coatings Technology, 2015, 276, 645-648.	4.8	8
116	Thermoelectric transport properties of AgmPb100BimSe100+2m system. Journal of Materials Science: Materials in Electronics, 2016, 27, 2712-2717.	2.2	8
117	Deposition of TiN/TiAlN multilayers by plasma-activated EB-PVD: tailored microstructure by jumping beam technology. Rare Metals, 2017, 36, 651-658.	7.1	8
118	Comparison of O adsorption on Ni3Al (001), (011), and (111) surfaces through first-principles calculations. Physica B: Condensed Matter, 2012, 407, 2321-2328.	2.7	7
119	Isothermal Oxidation Behavior of Dysprosium/S-Doped β-NiAl Alloys at 1200°C. Journal of Materials Science and Technology, 2014, 30, 229-233.	10.7	7
120	Improved mechanical properties of Ni-rich Ni3Al coatings produced by EB-PVD for repairing single crystal blades. Rare Metals, 2017, 36, 556-561.	7.1	7
121	Effect of applied stress on γ'-rafting behavior in a Ni-based single-crystal superalloy: experiments and finite element analysis. Journal of Iron and Steel Research International, 2019, 26, 259-267.	2.8	7
122	Microstructure stability of γâ€2Â+Âβ Ni–Al coated single-crystal superalloy N5 annealed at 1100°C. Rare Metals, 2021, 40, 693-700.	7.1	7
123	Thermal cycling performance of La2Ce2O7/YSZ TBCs with Pt/Dy co-doped NiAl bond coat on single crystal superalloy. Rare Metals, 2021, 40, 2568-2578.	7.1	7
124	Cyclic oxidation behavior of Cr-/Si-modified NiAlHf coatings on single-crystal superalloy produced by EB-PVD. Rare Metals, 2016, 35, 396-400.	7.1	6
125	Effect of trace Ce on high-temperature oxidation behavior of an Al–Si-coated Ni-based single crystal superalloy. Journal of Iron and Steel Research International, 2019, 26, 78-83.	2.8	6
126	Coating-related deterioration mechanism of creep performance at a thermal exposed single crystal Ni-base superalloy. Materials Characterization, 2022, 187, 111839.	4.4	6

#	Article	IF	CITATIONS
127	Cyclic oxidation behavior of Ni3Al-based single crystal alloy IC21. Rare Metals, 2023, 42, 1656-1662.	7.1	5
128	Effects of Different Surface Native Pre-Oxides on the Hot Corrosion Properties of Nickel-Based Single Crystal Superalloys. Materials, 2020, 13, 5774.	2.9	5
129	Effects of Cr-Al-Si and Cr-Al Coatings on the High Temperature Oxidation Resistance of a Ni3Al-Mo Based Single Crystal Alloy. Procedia Engineering, 2012, 27, 976-982.	1.2	4
130	Hot Corrosion Behavior of a Ni3Al-Based IC21 Alloy in a Molten Salt Environment. Oxidation of Metals, 2014, 81, 631-644.	2.1	4
131	Effects of Alloyed Aluminum and Tantalum on the Topological Inversion Behavior of Niâ€Based Single Crystal Superalloys at High Temperature. Advanced Engineering Materials, 2019, 21, 1800793.	3.5	4
132	Effect of Re on recrystallization behavior of Ni3Al based single crystal alloy. Procedia Engineering, 2012, 27, 1089-1096.	1.2	3
133	Effects of melt-pool geometry on microstructure structural damage behavior for single crystal superalloys in rapid solidification process. International Journal of Fatigue, 2018, 111, 345-355.	5.7	3
134	Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization. Metals, 2018, 8, 376.	2.3	3
135	In Situ Creep Behavior Characterization of Single Crystal Superalloy by UV-DIC at 980 °C. Coatings, 2019, 9, 598.	2.6	3
136	High temperature creep behavior and mechanism of a TiAl-based intermetallic. Rare Metals, 2011, 30, 323-325.	7.1	2
137	Existence patterns of Dy in \hat{I}^2 -NiAl from first-principles calculations. Rare Metals, 2016, 35, 356-360.	7.1	2
138	Microstructure and creep properties of Ni-based single-crystal superalloys with Mo/Al addition at 760°C/850ÂMPa. Rare Metals, 2018, , 1.	7.1	2
139	Study on abnormal hot corrosion behavior of nickel-based single-crystal superalloy at 900 °C after drilling. Npj Materials Degradation, 2021, 5, .	5.8	2
140	The electrical conductivity characteristics of Fe/Cu nano-scale multilayer materials. Science in China Series D: Earth Sciences, 2001, 44, 83-88.	0.9	1
141	Failure behaviors of TBCs on Ni3Al base alloy IC6A during room temperature tensile test and stress rupture test under the condition of 1100°C/100MPa. Intermetallics, 2007, 15, 801-804.	3.9	1
142	IMPROVEMENT OF AMBIENT DUCTILITY AND TOUGHNESS BY Γ PHASE PRECIPITATION IN NIAL-CR(MO)/NB ALLOYS. International Journal of Modern Physics B, 2010, 24, 2898-2903.	2.0	1
143	Sub-micron Co–Al2O3 composite powders prepared by room-temperature ultrasonic-assisted electroless plating. Rare Metals, 2015, , 1.	7.1	1
144	Directional solidification behavior of turbine blades in DZ125 alloy: design of blade numbers on assembly. Rare Metals, 2021, 40, 1134-1144.	7.1	1

#	Article	IF	CITATIONS
145	Study on Electronic Structure and Magnetic Properties of Ni3Fe Ferromagnetic Layer Adjacent to Cu. Journal of Materials Research, 2005, 20, 36-41.	2.6	0
146	THE INVESTIGATION ON LAMELLAR MICROSTRUCTURE TRANSFORMATION AND STABILITY IN TIAL BASED INTERMATELLICS. International Journal of Modern Physics B, 2010, 24, 2279-2284.	2.0	0
147	Microstructural stability and strengthening mechanism of a Ni3Al-Mo based single-crystal superalloy containing Re element during long-time thermal aging. Procedia Engineering, 2012, 27, 989-996.	1.2	0
148	High-temperature oxidation resistance of Si-coated C/SiC composites. Rare Metals, 2019, , 1.	7.1	0
149	Interdiffusion Behavior at Interface Between NiAlHfSi Coatings and Ni3Al Based Superalloy Substrates. , 2013, , 2051-2060.		0