
Clifford B Saper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5166334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Narcolepsy in orexin Knockout Mice. Cell, 1999, 98, 437-451.	13.5	2,981
2	Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437, 1257-1263.	13.7	2,285
3	Differential expression of orexin receptors 1 and 2 in the rat brain. Journal of Comparative Neurology, 2001, 435, 6-25.	0.9	1,481
4	The sleep switch: hypothalamic control of sleep and wakefulness. Trends in Neurosciences, 2001, 24, 726-731.	4.2	1,474
5	Sleep State Switching. Neuron, 2010, 68, 1023-1042.	3.8	1,141
6	A putative flip–flop switch for control of REM sleep. Nature, 2006, 441, 589-594.	13.7	1,086
7	From Lesions to Leptin. Neuron, 1999, 22, 221-232.	3.8	1,065
8	The Need to Feed. Neuron, 2002, 36, 199-211.	3.8	993
9	Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Research Reviews, 1984, 7, 229-259.	9.1	969
10	Distributions of leptin receptor mRNA isoforms in the rat brain. Journal of Comparative Neurology, 1998, 395, 535-547.	0.9	944
11	Distribution of cholinergic neurons in rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase. Journal of Comparative Neurology, 1983, 216, 53-68.	0.9	934
12	Expression of ghrelin receptor mRNA in the rat and the mouse brain. Journal of Comparative Neurology, 2006, 494, 528-548.	0.9	900
13	Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. Journal of Comparative Neurology, 1990, 293, 540-580.	0.9	893
14	Leptin Differentially Regulates NPY and POMC Neurons Projecting to the Lateral Hypothalamic Area. Neuron, 1999, 23, 775-786.	3.8	817
15	Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. Journal of Comparative Neurology, 1984, 222, 313-342.	0.9	807
16	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology, 1998, 402, 442-459.	0.9	783
17	Innervation of Histaminergic Tuberomammillary Neurons by GABAergic and Galaninergic Neurons in the Ventrolateral Preoptic Nucleus of the Rat. Journal of Neuroscience, 1998, 18, 4705-4721.	1.7	741
18	The α2-Adrenoceptor Agonist Dexmedetomidine Converges on an Endogenous Sleep-promoting Pathway to Exert Its Sedative Effects. Anesthesiology, 2003, 98, 428-436.	1.3	738

#	Article	IF	CITATIONS
19	Leptin Activates Hypothalamic CART Neurons Projecting to the Spinal Cord. Neuron, 1998, 21, 1375-1385.	3.8	717
20	Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. Journal of Comparative Neurology, 1987, 262, 27-45.	0.9	714
21	Efferent projections of the infralimbic cortex of the rat. Journal of Comparative Neurology, 1991, 308, 249-276.	0.9	709
22	The Central Autonomic Nervous System: Conscious Visceral Perception and Autonomic Pattern Generation. Annual Review of Neuroscience, 2002, 25, 433-469.	5.0	674
23	Leptin Regulation of Neuroendocrine Systems. Frontiers in Neuroendocrinology, 2000, 21, 263-307.	2.5	669
24	Fos Expression in Orexin Neurons Varies with Behavioral State. Journal of Neuroscience, 2001, 21, 1656-1662.	1.7	601
25	Effect of Lesions of the Ventrolateral Preoptic Nucleus on NREM and REM Sleep. Journal of Neuroscience, 2000, 20, 3830-3842.	1.7	563
26	Convergence of autonomic and limbic connections in the insular cortex of the rat. Journal of Comparative Neurology, 1982, 210, 163-173.	0.9	551
27	The Rostromedial Tegmental Nucleus (RMTg),Âa GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses. Neuron, 2009, 61, 786-800.	3.8	547
28	Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. Journal of Comparative Neurology, 1987, 259, 483-528.	0.9	516
29	Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. Journal of Comparative Neurology, 2003, 457, 213-235.	0.9	516
30	Organization of visceral and limbic connections in the insular cortex of the rat. Journal of Comparative Neurology, 1991, 311, 1-16.	0.9	483
31	Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms. Journal of Neuroscience, 2003, 23, 10691-10702.	1.7	482
32	The hypothalamic integrator for circadian rhythms. Trends in Neurosciences, 2005, 28, 152-157.	4.2	481
33	Unraveling the central nervous system pathways underlying responses to leptin. Nature Neuroscience, 1998, 1, 445-450.	7.1	478
34	Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13307-13312.	3.3	476
35	Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neuroscience, 2001, 4, 1165-1165.	7.1	467
36	Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry, 2000, 48, 99-109.	0.7	466

#	Article	IF	CITATIONS
37	Hypothalamic Arousal Regions Are Activated during Modafinil-Induced Wakefulness. Journal of Neuroscience, 2000, 20, 8620-8628.	1.7	463
38	A neural mechanism for exacerbation of headache by light. Nature Neuroscience, 2010, 13, 239-245.	7.1	459
39	Afferents to the Ventrolateral Preoptic Nucleus. Journal of Neuroscience, 2002, 22, 977-990.	1.7	439
40	Neurobiology of the Sleep-Wake Cycle: Sleep Architecture, Circadian Regulation, and Regulatory Feedback. Journal of Biological Rhythms, 2006, 21, 482-493.	1.4	432
41	Reassessment of the structural basis of the ascending arousal system. Journal of Comparative Neurology, 2011, 519, 933-956.	0.9	427
42	A Broad Role for Melanopsin in Nonvisual Photoreception. Journal of Neuroscience, 2003, 23, 7093-7106.	1.7	418
43	Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat. Journal of Comparative Neurology, 1988, 269, 315-341.	0.9	405
44	The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nature Neuroscience, 2006, 9, 398-407.	7.1	404
45	Vagus Nerve Stimulation. Epilepsia, 1998, 39, 677-686.	2.6	400
46	Identification of Wake-Active Dopaminergic Neurons in the Ventral Periaqueductal Gray Matter. Journal of Neuroscience, 2006, 26, 193-202.	1.7	399
47	Leptin Activates Neurons in Ventrobasal Hypothalamus and Brainstem. Endocrinology, 1997, 138, 839-842.	1.4	390
48	Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. Journal of Comparative Neurology, 1985, 240, 153-160.	0.9	381
49	Characterization of CART neurons in the rat and human hypothalamus. Journal of Comparative Neurology, 2001, 432, 1-19.	0.9	368
50	Orexin (Hypocretin) Neurons Contain Dynorphin. Journal of Neuroscience, 2001, 21, RC168-RC168.	1.7	365
51	Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biological Psychiatry, 1999, 45, 1128-1137.	0.7	360
52	Midbrain dopaminergic cell loss in parkinson's disease: Computer visualization. Annals of Neurology, 1989, 26, 507-514.	2.8	359
53	Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. Journal of Comparative Neurology, 1990, 295, 624-661.	0.9	352
54	Homeostatic, circadian, and emotional regulation of sleep. Journal of Comparative Neurology, 2005, 493, 92-98.	0.9	336

#	Article	IF	CITATIONS
55	Chemical characterization of leptin-activated neurons in the rat brain. Journal of Comparative Neurology, 2000, 423, 261-281.	0.9	335
56	Bed nucleus of the stria terminalis: Cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. Journal of Comparative Neurology, 1989, 283, 315-332.	0.9	331
57	Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. Journal of Comparative Neurology, 1988, 272, 579-604.	0.9	320
58	The Neurologic Basis of Fever. New England Journal of Medicine, 1994, 330, 1880-1886.	13.9	319
59	Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. Journal of Comparative Neurology, 1985, 237, 21-46.	0.9	314
60	Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends in Neurosciences, 1997, 20, 565-570.	4.2	304
61	Wake–sleep circuitry: an overview. Current Opinion in Neurobiology, 2017, 44, 186-192.	2.0	299
62	Distribution of fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. , 1996, 371, 85-103.		294
63	EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nature Neuroscience, 2007, 10, 1131-1133.	7.1	290
64	Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. Journal of Comparative Neurology, 1987, 259, 591-603.	0.9	289
65	Selective Activation of the Extended Ventrolateral Preoptic Nucleus during Rapid Eye Movement Sleep. Journal of Neuroscience, 2002, 22, 4568-4576.	1.7	287
66	The hypothalamus. Current Biology, 2014, 24, R1111-R1116.	1.8	287
67	Afferent connections of the median preoptic nucleus in the rat: Anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricular (AV3V) region. Brain Research, 1983, 288, 21-31.	1.1	284
68	Projections of the pedunculopontine tegmental nucleus in the rat: evidence for additional extrapyramidal circuitry. Brain Research, 1982, 252, 367-372.	1.1	271
69	Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. , 1997, 381, 119-129.		248
70	Reciprocal parabrachial-cortical connections in the rat. Brain Research, 1982, 242, 33-40.	1.1	245
71	The GABAergic parafacial zone is a medullary slow wave sleep–promoting center. Nature Neuroscience, 2014, 17, 1217-1224.	7.1	245
72	A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale. PLoS Computational Biology, 2009, 5, e1000334.	1.5	242

#	Article	IF	CITATIONS
73	Differential Rescue of Light- and Food-Entrainable Circadian Rhythms. Science, 2008, 320, 1074-1077.	6.0	239
74	Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. Journal of Clinical Investigation, 2002, 110, 43-52.	3.9	236
75	Ventromedial Preoptic Prostaglandin E2 Activates Fever-Producing Autonomic Pathways. Journal of Neuroscience, 1996, 16, 6246-6254.	1.7	227
76	Any way you cut it: A new journal policy for the use of unbiased counting methods. , 1996, 364, 5-5.		218
77	Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Research, 1998, 793, 169-175.	1.1	218
78	Neurochemical architecture of the human striatum. , 1997, 384, 1-25.		217
79	Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. Journal of Comparative Neurology, 1992, 315, 34-52.	0.9	213
80	Distribution and characterization of tumor necrosis factor-?-like immunoreactivity in the murine central nervous system. Journal of Comparative Neurology, 1993, 337, 543-567.	0.9	213
81	Neural circuitry engaged by prostaglandins during the sickness syndrome. Nature Neuroscience, 2012, 15, 1088-1095.	7.1	212
82	Topographic organization of cardiovascular responses to electrical and glutamate microstimulation of the parabrachial nucleus in the rat. Journal of Comparative Neurology, 1992, 326, 245-262.	0.9	210
83	Role of endogenous sleepâ€wake and analgesic systems in anesthesia. Journal of Comparative Neurology, 2008, 508, 648-662.	0.9	207
84	Neural Circuitry of Stress-Induced Insomnia in Rats. Journal of Neuroscience, 2008, 28, 10167-10184.	1.7	206
85	Glutamatergic Signaling from the Parabrachial Nucleus Plays a Critical Role in Hypercapnic Arousal. Journal of Neuroscience, 2013, 33, 7627-7640.	1.7	195
86	The pontine REM switch: past and present. Journal of Physiology, 2007, 584, 735-741.	1.3	188
87	Organization of atriopeptin-like immunoreactive neurons in the central nervous system of the rat. Journal of Comparative Neurology, 1986, 253, 315-341.	0.9	187
88	A human brain network derived from coma-causing brainstem lesions. Neurology, 2016, 87, 2427-2434.	1.5	187
89	Expression of inducible cyclooxygenase mRNA in the mouse brain after systemic administration of bacterial lipopolysaccharide. Brain Research, 1996, 713, 64-69.	1.1	181
90	Chapter 1 The emotional motor system. Progress in Brain Research, 1996, 107, 3-6.	0.9	177

#	Article	IF	CITATIONS
91	An open letter to our readers on the use of antibodies. Journal of Comparative Neurology, 2005, 493, 477-478.	0.9	177
92	Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nature Communications, 2018, 9, 4129.	5.8	176
93	Suprachiasmatic neuron numbers and rest–activity circadian rhythms in older humans. Annals of Neurology, 2015, 78, 317-322.	2.8	171
94	Cholecystokinin-, galanin-, and corticotropin-releasing factor-like immunoreactive projections from the nucleus of the solitary tract to the parabrachial nucleus in the rat. Journal of Comparative Neurology, 1990, 293, 581-598.	0.9	170
95	Distribution and characterization of cyclooxygenase immunoreactivity in the ovine brain. Journal of Comparative Neurology, 1992, 322, 409-438.	0.9	165
96	Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Progress in Brain Research, 2006, 153, 243-252.	0.9	159
97	A Guide to the Perplexed on the Specificity of Antibodies. Journal of Histochemistry and Cytochemistry, 2009, 57, 1-5.	1.3	155
98	A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Current Biology, 2016, 26, 2137-2143.	1.8	154
99	Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. Journal of Physiology, 2003, 551, 945-954.	1.3	153
100	Calcitonin gene-related peptide (CGRP) immunoreactive projections from the thalamus to the striatum and amygdala in the rat. Journal of Comparative Neurology, 1991, 308, 293-310.	0.9	152
101	Hypothalamic pathology in Alzheimer's disease. Neuroscience Letters, 1987, 74, 364-370.	1.0	148
102	Locus Ceruleus and Anterior Cingulate Cortex Sustain Wakefulness in a Novel Environment. Journal of Neuroscience, 2010, 30, 14543-14551.	1.7	141
103	Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide. , 1996, 374, 315-331.		139
104	Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer's disease. Brain, 2014, 137, 2847-2861.	3.7	136
105	Medullary catecholamine inputs to the anteroventral third ventricular cardiovascular regulatory region in the rat. Neuroscience Letters, 1983, 42, 285-291.	1.0	135
106	Parallel Preoptic Pathways for Thermoregulation. Journal of Neuroscience, 2009, 29, 11954-11964.	1.7	134
107	Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. Journal of Comparative Neurology, 2012, 520, 1985-2001.	0.9	134
108	Relationship of EP1-4 prostaglandin receptors with rat hypothalamic cell groups involved in lipopolysaccharide fever responses. Journal of Comparative Neurology, 2000, 428, 20-32.	0.9	131

#	Article	IF	CITATIONS
109	Supramammillary glutamate neurons are a key node of the arousal system. Nature Communications, 2017, 8, 1405.	5.8	131
110	Neuropeptide-immunoreactive neurons projecting to the paraventricular hypothalamic nucleus in the rat. Journal of Comparative Neurology, 1994, 346, 137-150.	0.9	130
111	Lipopolysaccharide Activates Specific Populations of Hypothalamic and Brainstem Neurons That Project to the Spinal Cord. Journal of Neuroscience, 2000, 20, 6578-6586.	1.7	129
112	Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus, and related pathways in the rat. Journal of Comparative Neurology, 1989, 290, 487-501.	0.9	125
113	A hypothalamic circuit for the circadian control of aggression. Nature Neuroscience, 2018, 21, 717-724.	7.1	124
114	A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron, 2017, 96, 1153-1167.e5.	3.8	116
115	Inhibition of the firing of vasopressin neurons by atriopeptin. Nature, 1987, 329, 151-153.	13.7	113
116	Brain natriuretic peptides: Differential localization of a new family of neuropeptides. Neuroscience Letters, 1989, 96, 29-34.	1.0	113
117	The central circadian timing system. Current Opinion in Neurobiology, 2013, 23, 747-751.	2.0	106
118	Leptin Activates Neurons in Ventrobasal Hypothalamus and Brainstem. , 0, .		106
119	CORRESPONDENCE OF MELANIN-PIGMENTED NEURONS IN HUMAN BRAIN WITH A1–A14 CATECHOLAMINE CELL ROUPS. Brain, 1982, 105, 87-101.	3.7	105
120	Neuropeptide organization of the hypothalamic projection to the parabrachial nucleus in the rat. Journal of Comparative Neurology, 1990, 295, 662-682.	0.9	102
121	Cholecystokinin-immunoreactive innervation of the ventromedial hypothalamus in the rat: Possible substrate for autonomic regulation of feeding. Neuroscience Letters, 1985, 53, 289-296.	1.0	99
122	Preservation of hypothalamic dopaminergic neurons in Parkinson's disease. Annals of Neurology, 1985, 18, 552-555.	2.8	98
123	COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. Journal of Clinical Investigation, 2009, 119, 287-94.	3.9	98
124	Colocalization of atriopeptin-like immunoreactivity with choline acetyltransferase-and substance P-like immunoreactivity in the pedunculopontine and laterodorsal tegmental nuclei in the rat. Brain Research, 1986, 382, 163-168.	1.1	95
125	Medullary catecholaminergic neurons in the normal human brain and in Parkinson's disease. Annals of Neurology, 1991, 29, 577-584.	2.8	94
126	Lateral hypothalamic innervation of the cerebral cortex: Immunoreactive staining for a peptide resembling but immunochemically distinct from pituitary/arcuate α-melanocyte stimulating hormone. Brain Research Bulletin, 1986, 16, 107-120.	1.4	93

#	Article	IF	CITATIONS
127	Role of the Medial Prefrontal Cortex in Cataplexy. Journal of Neuroscience, 2013, 33, 9743-9751.	1.7	93
128	Focal Deletion of the Adenosine A1 Receptor in Adult Mice Using an Adeno-Associated Viral Vector. Journal of Neuroscience, 2003, 23, 5762-5770.	1.7	92
129	A Brainstem Network Mediating Apneic Reflexes in the Rat. Journal of Neuroscience, 1998, 18, 6048-6056.	1.7	91
130	Co-Localization of substance P- and phenylethanolamine-N-methyltransferase-like immunoreactivity in neurons of ventrolateral medulla that project to the spinal cord: Potential role in control of vasomotor tone. Neuroscience Letters, 1985, 55, 255-260.	1.0	90
131	Specificity of spinal projections from hypothalamic and brainstem areas which innervate sympathetic preganglionic neurons. Brain Research, 1985, 360, 159-164.	1.1	88
132	Neurobiological Basis of Fever. Annals of the New York Academy of Sciences, 1998, 856, 90-94.	1.8	87
133	Projections from the subparaventricular zone define four channels of output from the circadian timing system. Journal of Comparative Neurology, 2015, 523, 2714-2737.	0.9	86
134	Specific roles of cyclooxygenase-1 and cyclooxygenase-2 in lipopolysaccharide-induced fever and fos expression in rat brain. Journal of Comparative Neurology, 2003, 463, 3-12.	0.9	85
135	Respiratoryâ€related outputs of glutamatergic, hypercapniaâ€responsive parabrachial neurons in mice. Journal of Comparative Neurology, 2015, 523, 907-920.	0.9	83
136	Chapter 28 Endogenous pyrogens in the CNS: role in the febrile response. Progress in Brain Research, 1992, 93, 419-429.	0.9	82
137	Evidence for a cholinergic projection from the pedunculopontine tegmental nucleus to the rostral ventrolateral medulla in the rat. Brain Research, 1990, 517, 19-24.	1.1	80
138	Neurofibrillary tangles in the cerebral cortex of sheep. Neuroscience Letters, 1994, 170, 187-190.	1.0	80
139	Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience, 2016, 336, 102-113.	1.1	80
140	Increased Fragmentation of Rest-Activity Patterns Is Associated With a Characteristic Pattern of Cognitive Impairment in Older Individuals. Sleep, 2012, 35, 633-640.	0.6	77
141	Microinjection of a cyclooxygenase inhibitor into the anteroventral preoptic region attenuates LPS fever. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R783-R789.	0.9	75
142	Identifying the efferent projections of leptinâ€responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. Journal of Comparative Neurology, 2010, 518, 2090-2108.	0.9	75
143	Distribution of catecholamine-containing neurons in the normal human hypothalamus. Brain Research, 1985, 328, 73-80.	1.1	74
144	Stabilization of TMB Reaction Product for electron microscopic retrograde and anterograde fiber tracing. Brain Research Bulletin, 1985, 14, 277-281.	1.4	74

#	Article	IF	CITATIONS
145	Hypothalamic connections with the cerebral cortex. Progress in Brain Research, 2000, 126, 39-48.	0.9	73
146	Reciprocal Control of Drinking Behavior by Median Preoptic Neurons in Mice. Journal of Neuroscience, 2016, 36, 8228-8237.	1.7	72
147	Reduced Density of Cholinergic Interneurons in the Ventral Striatum in Schizophrenia: An In Situ Hybridization Study. Biological Psychiatry, 2005, 58, 408-416.	0.7	71
148	Effects of Sleep on Wake-Induced c-fosExpression. Journal of Neuroscience, 1997, 17, 9746-9750.	1.7	69
149	Ciliary Neurotrophic Factor and Leptin Induce Distinct Patterns of Immediate Early Gene Expression in the Brain. Diabetes, 2004, 53, 911-920.	0.3	69
150	Anatomical Location of the Mesencephalic Locomotor Region and Its Possible Role in Locomotion, Posture, Cataplexy, and Parkinsonism. Frontiers in Neurology, 2015, 6, 140.	1.1	69
151	Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. Journal of Comparative Neurology, 1994, 345, 321-344.	0.9	67
152	The spinoparabrachial pathway: Shedding new light on an old path. Journal of Comparative Neurology, 1995, 353, 477-479.	0.9	66
153	Pathological changes in frontal cortex from biopsy to autopsy in Alzheimer's disease. Neurobiology of Aging, 1993, 14, 589-596.	1.5	65
154	Connections of the hippocampal formation in humans: I. The mossy fiber pathway. , 1997, 385, 325-351.		64
155	Synaptic and morphological characteristics of temperatureâ€sensitive and â€insensitive rat hypothalamic neurones. Journal of Physiology, 2001, 537, 521-535.	1.3	62
156	Localization of mu-opioid receptors on amygdaloid projection neurons in the parabrachial nucleus of the rat. Brain Research, 1999, 827, 198-204.	1.1	61
157	Molecular Evolution of Ï,, Protein: Implications for Alzheimer's Disease. Journal of Neurochemistry, 1996, 67, 1622-1632.	2.1	61
158	Effects of Lesions of the Histaminergic Tuberomammillary Nucleus on Spontaneous Sleep in Rats. Sleep, 2004, 27, 1275-1281.	0.6	61
159	What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake–sleep regulation. Current Opinion in Neurobiology, 2014, 29, 165-171.	2.0	61
160	Quantification of the Fragmentation of Rest-Activity Patterns in Elderly Individuals Using a State Transition Analysis. Sleep, 2011, 34, 1569-1581.	0.6	59
161	The lateral hypothalamic parvalbuminâ€immunoreactive (PV1) nucleus in rodents. Journal of Comparative Neurology, 2012, 520, 798-815.	0.9	57
162	Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice. Journal of Clinical Investigation, 2015, 126, 695-705.	3.9	56

#	Article	IF	CITATIONS
163	Neural Circuitry Underlying Waking Up to Hypercapnia. Frontiers in Neuroscience, 2019, 13, 401.	1.4	55
164	Central Autonomic System. , 2015, , 629-673.		54
165	Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. Journal of Physiology, 2017, 595, 6569-6583.	1.3	54
166	Cholinergic innervation of the human cerebellum. Journal of Comparative Neurology, 1993, 328, 364-376.	0.9	52
167	Central Neurogenic Hyperventilation. Archives of Neurology, 2005, 62, 1632-4.	4.9	51
168	Metabolic Effects of Chronic Sleep Restriction in Rats. Sleep, 2012, 35, 1511-1520.	0.6	49
169	Function of the locus coeruleus. Trends in Neurosciences, 1987, 10, 343-344.	4.2	48
170	Contrasting effects of E type prostaglandin (EP) receptor agonists on core body temperature in rats. Brain Research, 2003, 968, 256-262.	1.1	48
171	A common polymorphism near <i>PER1</i> and the timing of human behavioral rhythms. Annals of Neurology, 2012, 72, 324-334.	2.8	48
172	A translational approach to capture gait signatures of neurological disorders in mice and humans. Scientific Reports, 2017, 7, 3225.	1.6	48
173	EP3R-Expressing Glutamatergic Preoptic Neurons Mediate Inflammatory Fever. Journal of Neuroscience, 2020, 40, 2573-2588.	1.7	46
174	Modafinil: a drug in search of a mechanism. Sleep, 2004, 27, 11-2.	0.6	46
175	Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. Journal of Comparative Neurology, 1997, 385, 352-371.	0.9	45
176	Orexin, drugs and motivated behaviors. Nature Neuroscience, 2005, 8, 1286-1288.	7.1	45
177	Atriopeptin: potent hormone and potential neuromediator. Trends in Neurosciences, 1985, 8, 509-511.	4.2	44
178	αâ€synuclein pathology accumulates in sacral spinal visceral sensory pathways. Annals of Neurology, 2015, 78, 142-149.	2.8	42
179	A Simple inexpensive and reliable nanoliter syringe. Brain Research Bulletin, 1983, 10, 403-405.	1.4	39
180	Evidence for a cortical projection to the magnocellular basal nucleus in the rat: an electron microscopic axonal transport study. Brain Research, 1985, 334, 339-343.	1.1	39

#	Article	IF	CITATIONS
181	Central Autonomic System. , 2004, , 761-796.		39
182	A Glutamatergic Hypothalamomedullary Circuit Mediates Thermogenesis, but Not Heat Conservation, during Stress-Induced Hyperthermia. Current Biology, 2018, 28, 2291-2301.e5.	1.8	39
183	The ventrolateral preoptic nucleus is not required for isoflurane general anesthesia. Brain Research, 2011, 1426, 30-37.	1.1	38
184	The Neurobiology of Sleep. CONTINUUM Lifelong Learning in Neurology, 2013, 19, 19-31.	0.4	38
185	Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals. Nature Communications, 2020, 11, 2769.	5.8	38
186	Movement suppression during anesthesia: Neural projections from the mesopontine tegmentum to areas involved in motor control. Journal of Comparative Neurology, 2005, 489, 425-448.	0.9	37
187	Alz-50 immunohistochemistry in the normal sheep striatum: a light and electron microscope study. Brain Research, 1993, 600, 285-297.	1.1	33
188	Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness. Sleep, 2018, 41, .	0.6	33
189	Regulation of hippocampal dendritic spines following sleep deprivation. Journal of Comparative Neurology, 2020, 528, 380-388.	0.9	33
190	The roles of prostaglandin E2 and D2 in lipopolysaccharide-mediated changes in sleep. Brain, Behavior, and Immunity, 2015, 47, 172-177.	2.0	32
191	Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. Journal of Neuroscience, 2019, 39, 8929-8939.	1.7	32
192	Critical Dynamics and Coupling in Bursts of Cortical Rhythms Indicate Non-Homeostatic Mechanism for Sleep-Stage Transitions and Dual Role of VLPO Neurons in Both Sleep and Wake. Journal of Neuroscience, 2020, 40, 171-190.	1.7	31
193	Perspectives on the rapid eye movement sleep switch in rapid eye movement sleep behavior disorder. Sleep Medicine, 2013, 14, 707-713.	0.8	30
194	Efferent connections of the parvalbuminâ€positive (PV1) nucleus in the lateral hypothalamus of rodents. Journal of Comparative Neurology, 2013, 521, 3133-3153.	0.9	30
195	Pain as a visceral sensation. Progress in Brain Research, 2000, 122, 237-243.	0.9	29
196	Orexins: looking forward to sleep, back at addiction. Nature Medicine, 2007, 13, 126-128.	15.2	28
197	Impaired Circadian Photosensitivity in Mice Lacking Glutamate Transmission from Retinal Melanopsin Cells. Journal of Biological Rhythms, 2015, 30, 35-41.	1.4	28
100	The House Alarm Coll Metabolism 2016 23 754 755	7.9	9.0

198 The House Alarm. Cell Metabolism, 2016, 23, 754-755.

7.2 28

#	Article	IF	CITATIONS
199	Orexin neurons inhibit sleep to promote arousal. Nature Communications, 2022, 13, .	5.8	27
200	Is there even such a thing as "ldiopathic normal pressure hydrocephalus�. Annals of Neurology, 2017, 82, 514-515.	2.8	24
201	Chapter 32 Role of the cerebral cortex and striatum in emotional motor response. Progress in Brain Research, 1996, 107, 537-550.	0.9	23
202	What's in a citation impact factor? A journal by any other Measure , 1999, 411, 1-2.		22
203	The Dance of the Perivascular and Endothelial Cells: Mechanisms of Brain Response to Immune Signaling. Neuron, 2010, 65, 4-6.	3.8	22
204	Commentary on: Efferent connections of the parabrachial nucleus in the rat. C.B. Saper and A.D. Loewy, Brain Research 197:291–317, 1980. Brain Research, 2016, 1645, 15-17.	1.1	20
205	Anatomy of the Mammalian Circadian System. , 2005, , 335-350.		20
206	Counting on our reviewers to set the standards. Journal of Comparative Neurology, 1997, 386, 1-1.	0.9	19
207	Lateral hypothalamic acetylcholinesterase-immunoreactive neurons co-express either orexin or melanin concentrating hormone. Neuroscience Letters, 2004, 370, 123-126.	1.0	19
208	Is Food-Directed Behavior an Appropriate Measure of Circadian Entrainment to Restricted Daytime Feeding?. Journal of Biological Rhythms, 2007, 22, 479-483.	1.4	19
209	Prostaglandin E2 Attenuates Preoptic Expression of GABAA Receptors via EP3 Receptors. Journal of Biological Chemistry, 2008, 283, 11064-11071.	1.6	19
210	Sleep, circadian rhythms, and dementia. Annals of Neurology, 2011, 70, 677-679.	2.8	19
211	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology, 1998, 402, 442-459.	0.9	19
212	Emerging therapeutics in sleep. Annals of Neurology, 2013, 74, 435-440.	2.8	18
213	Flipping the switch on the body's thermoregulatory system. Nature, 2020, 583, 34-35.	13.7	16
214	Longâ€ŧerm synaptic plasticity is impaired in rats with lesions of the ventrolateral preoptic nucleus. European Journal of Neuroscience, 2009, 30, 2112-2120.	1.2	15
215	How low can you go?. Annals of Neurology, 2015, 78, 665-666.	2.8	13
216	All fall down?: The mechanism of orthostatic hypotension in multiple systems atropy and Parkinson's? disease. Annals of Neurology, 1998, 43, 149-151.	2.8	12

#	Article	IF	CITATIONS
217	Image is Everything. , 1999, 412, 381-382.		12
218	Role of the median preoptic nucleus in the autonomic response to heat-exposure. Temperature, 2018, 5, 4-6.	1.7	12
219	Chronic motor axonal neuropathy: Pathological evidence of inflammatory polyradiculoneuropathy. , 1999, 22, 266-270.		11
220	Armodafinil-induced wakefulness in animals with ventrolateral preoptic lesions. Nature and Science of Sleep, 2014, 6, 57.	1.4	10
221	Standards of evidence in chronobiology: A response. Journal of Circadian Rhythms, 2014, 7, 9.	2.9	10
222	Commentary on: Saper CB, Loewy AD, Swanson LW, Cowan WM. (1976) Direct hypothalamo-autonomic connections. Brain Research 117:305–312. Brain Research, 2016, 1645, 12-14.	1.1	9
223	Passages: 1994-1995. Journal of Comparative Neurology, 1995, 351, 1-4.	0.9	8
224	Genetic identification of preoptic neurons that regulate body temperature in mice. Temperature, 2022, 9, 14-22.	1.7	8
225	Chronic circadian disruption on a high-fat diet impairs glucose tolerance. Metabolism: Clinical and Experimental, 2022, 130, 155158.	1.5	8
226	Academic publishing, part <scp>III</scp> : How to write a research paper (so that it will be accepted) in a highâ€quality journal. Annals of Neurology, 2015, 77, 8-12.	2.8	7
227	Any way you cut it: A new journal policy for the use of unbiased counting methods. , 1996, 364, 5.		7
228	BIOMEDICINE: Enhanced: Life, the Universe, and Body Temperature. Science, 2006, 314, 773-774.	6.0	6
229	Academic publishing, part II: Where to publish your work. Annals of Neurology, 2014, 76, 1-4.	2.8	6
230	Anatomy of the Mammalian Circadian System. , 2017, , 343-350.e4.		6
231	Somatosympathetic reflex unilateral sweating and pupillary dilatation in a paraplegic man. Annals of Neurology, 1986, 19, 389-390.	2.8	5
232	The agony of the ecstasy. Neurology, 2009, 73, 1947-1948.	1.5	5
233	Brain Circuitry for Arousal from Apnea. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 63-69.	2.0	5
234	Median preoptic GABA and glutamate neurons exert differential control over sleep behavior. Current Biology, 2022, 32, 2011-2021.e3.	1.8	5

#	Article	IF	CITATIONS
235	The value of alternative morphological approaches to alzheimer's disease. Neurobiology of Aging, 1987, 8, 576-577.	1.5	4
236	Restoration: Potential for compensatory changes in numbers of neurons in adult human brain. Annals of Neurology, 2013, 74, 762-764.	2.8	4
237	Clinical case conference: A 41â€yearâ€old woman with progressive weakness and sensory loss. Annals of Neurology, 2014, 75, 9-19.	2.8	4
238	The intermediate nucleus in humans: Cytoarchitecture, chemoarchitecture, and relation to sleep, sex, and Alzheimer disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 461-469.	1.0	4
239	Origin of porcine brain natriuretic peptide-like immunoreactive innervation of the middle cerebral artery in the rat. Neuroscience Letters, 1991, 128, 217-220.	1.0	3
240	Homage to Sanford L. Palay, M.D. Editor-in-Chief, 1980-1993. Journal of Comparative Neurology, 1996, 371, 1-2.	0.9	3
241	New perspectives on circadian rhythms and sleep. Current Opinion in Neurobiology, 2013, 23, 721-723.	2.0	3
242	Biology of sleep and circadian rhythms in the neurology resident. Annals of Neurology, 2015, 78, 1-2.	2.8	3
243	The Affordable Care Act…or Is It?. Annals of Neurology, 2015, 78, 155-157.	2.8	3
244	Passages 2019. Annals of Neurology, 2019, 85, 1-11.	2.8	3
245	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. , 1998, 402, 442.		3
246	Academic publishing, part I: Peering into the review process. Annals of Neurology, 2014, 75, 175-177.	2.8	2
247	The great depression of biomedical science. Annals of Neurology, 2014, 75, 169-170.	2.8	2
248	Is it time to reconsider the classic neurological examination?. Annals of Neurology, 2018, 84, 483-484.	2.8	2
249	Symptomatic Hydrocephalus with Normal Cerebrospinal Pressure and Alzheimer's Disease. Annals of Neurology, 2020, 88, 685-687.	2.8	2
250	The search for thermoregulatory neurons is heating up. Cell Metabolism, 2021, 33, 1269-1271.	7.2	2
251	Distributions of leptin receptor mRNA isoforms in the rat brain. , 1998, 395, 535.		2
252	Major advances in sleep neurology: 2002–22. Lancet Neurology, The, 2022, 21, 678-680.	4.9	2

#	Article	IF	CITATIONS
253	Limitations of morphological studies in human brain: Opportunities for studies in nonhuman primates. Neurobiology of Aging, 1993, 14, 705-706.	1.5	1
254	No place for secrets in scientific research. Nature, 2006, 442, 353-353.	13.7	1
255	In living color. Journal of Comparative Neurology, 2007, 502, 173-174.	0.9	1
256	The Neuroscience Peer Review Consortium. Neurobiology of Disease, 2009, 33, 313-314.	2.1	1
257	The Neuroscience Peer Review Consortium. Neuroinformatics, 2009, 7, 89-91.	1.5	1
258	MR spectroscopy in translational neuroscience. Journal of Comparative Neurology, 2010, 518, 4089-4090.	0.9	1
259	Weighed and Measured. Annals of Neurology, 2014, 76, 319-320.	2.8	1
260	The importance of being earnest: The role of industry employees in studies about their products. Annals of Neurology, 2014, 75, 803-804.	2.8	1
261	What is quality in medical care?. Annals of Neurology, 2015, 77, 909-910.	2.8	1
262	Passages 2018. Annals of Neurology, 2018, 83, 1-9.	2.8	1
263	Why "Medicare for All―would be a disaster. Annals of Neurology, 2019, 86, 475-476.	2.8	1
264	Remembrance of Things Past: A Critical Step in Changing our Future. Annals of Neurology, 2021, 90, 521-523.	2.8	1
265	Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. , 1997, 385, 352.		1
266	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. , 1998, 402, 442.		1
267	Chemical characterization of leptin-activated neurons in the rat brain. , 2000, 423, 261.		1
268	Relationship of EP1-4 prostaglandin receptors with rat hypothalamic cell groups involved in lipopolysaccharide fever responses. , 2000, 428, 20.		1
269	Identifying specific populations of preoptic thermoregulatory neurons: The way forward. Temperature, 2022, 9, 12-13.	1.7	1
270	Forward into our next century?A letter from the editor-in-chief to the readers of theJournal of Comparative Neurology, Journal of Comparative Neurology, 1994, 339, 1-2.	0.9	0

#	Article	IF	CITATIONS
271	Passages: 1997. Journal of Comparative Neurology, 1997, 377, 1-4.	0.9	0
272	Passages 1999: Evolution of a journal. Journal of Comparative Neurology, 1999, 403, 1-4.	0.9	0
273	Past as prelude:The central nervous system of vertebrates. Journal of Comparative Neurology, 1999, 410, 1-3.	0.9	0
274	Editorial: Scientific conduct and publication: TheJournal takes a stand. , 1999, 411, 179-180.		0
275	Corrigendum. , 2000, 419, 135-135.		0
276	Minding the mind. Progress in Brain Research, 2000, 122, 3-8.	0.9	0
277	W. Maxwell Cowan, M.B.B.Ch., D. Phil. 1932-2002. Journal of Comparative Neurology, 2003, 463, 1-1.	0.9	0
278	Reminiscence. Journal of Comparative Neurology, 2003, 463, 2-2.	0.9	0
279	Passages: 2006. Journal of Comparative Neurology, 2006, 494, 1-6.	0.9	0
280	VISCERAL SENSATION AND VISCERAL SENSORY DISORDERS. CONTINUUM Lifelong Learning in Neurology, 2007, 13, 204-214.	0.4	0
281	Inducible clocks: Food entrainment of circadian rhythms. Autonomic Neuroscience: Basic and Clinical, 2007, 135, 18-19.	1.4	0
282	JCN at 500. Journal of Comparative Neurology, 2007, 500, 1-5.	0.9	0
283	The Neuroscience Peer Review Consortium. Brain Structure and Function, 2009, 213, 359-361.	1.2	0
284	The Neuroscience Peer Review Consortium. Experimental Neurology, 2009, 216, 1-2.	2.0	0
285	A treasure trove of gene expression patterns. Nature Neuroscience, 2010, 13, 658-659.	7.1	0
286	Genetic dissection of neural circuitry regulating behavioral state using conditional transgenics. Sleep and Biological Rhythms, 2011, 9, 78-83.	0.5	0
287	Goodbye to Edward G. (Ted) Jones, MD, DPhil, 1939â€2011. Journal of Comparative Neurology, 2011, 519, 3125-3127.	0.9	0
288	Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	0.9	0

#	Article	IF	CITATIONS
289	Rationalizing funding of graduate medical education. Annals of Neurology, 2014, 76, 467-468.	2.8	Ο
290	The view from here: The eighth year of RomneyCare. Annals of Neurology, 2014, 75, 467-468.	2.8	0
291	<i>Annals</i> policy on deceptive disclosure of conflicts of interest. Annals of Neurology, 2014, 76, 149-150.	2.8	Ο
292	Reply. Annals of Neurology, 2015, 77, 356-356.	2.8	0
293	Reply to Letter. Annals of Neurology, 2015, 77, 1083-1084.	2.8	Ο
294	Short and Sweet. Annals of Neurology, 2015, 77, 555-555.	2.8	0
295	A changing of the guard. Annals of Neurology, 2016, 80, 643-643.	2.8	Ο
296	You can quote me on this…. Annals of Neurology, 2016, 79, 869-870.	2.8	0
297	Introduction to the Topic. , 2017, , 3-4.		0
298	Reply to "Medicare for All?― Annals of Neurology, 2020, 87, 156-156.	2.8	0
299	What Are the Odds?. Annals of Neurology, 2021, 89, 11-12.	2.8	0
300	Passages 2022. Annals of Neurology, 2022, 91, 4-12.	2.8	0
301	Neurobiology of Insomnia. Journal of Clinical Sleep Medicine, 2005, 01, .	1.4	Ο