
Charles Tellier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5166325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and engineering of two new GH9 and GH48 cellulases from a Bacillus pumilus isolated from Lake Bogoria. Biotechnology Letters, 2021, 43, 691-700.	2.2	10
2	A Single Point Mutation Converts GH84 <i>O</i> -GlcNAc Hydrolases into Phosphorylases: Experimental and Theoretical Evidence. Journal of the American Chemical Society, 2020, 142, 2120-2124.	13.7	25
3	Toward the design of efficient transglycosidases: the case of the GH1 of Thermus thermophilus. Protein Engineering, Design and Selection, 2019, 32, 309-316.	2.1	5
4	The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily. Journal of Biological Chemistry, 2019, 294, 6923-6939.	3.4	32
5	Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms. Journal of Organic Chemistry, 2017, 82, 7114-7122.	3.2	8
6	Internal Water Dynamics Control the Transglycosylation/Hydrolysis Balance in the Agarase (AgaD) of <i>Zobellia galactanivorans</i> . ACS Catalysis, 2017, 7, 3357-3367.	11.2	23
7	Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins. Langmuir, 2016, 32, 5480-5490.	3.5	2
8	In vivo phosphorylation of a peptide tag for protein purification. Biotechnology Letters, 2016, 38, 767-772.	2.2	4
9	Semi-rational approach for converting a GH36 α-glycosidase into an α-transglycosidase. Glycobiology, 2015, 25, 420-427.	2.5	27
10	Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Organic and Biomolecular Chemistry, 2015, 13, 8393-8404.	2.8	39
11	De novo design of a trans-Â-N-acetylglucosaminidase activity from a GH1 Â-glycosidase by mechanism engineering. Glycobiology, 2015, 25, 394-402.	2.5	15
12	Design of an Î \pm -l-transfucosidase for the synthesis of fucosylated HMOs. Glycobiology, 2015, 26, cwv099.	2.5	31
13	Design and Optimization of a Phosphopeptide Anchor for Specific Immobilization of a Capture Protein on Zirconium Phosphonate Modified Supports. Langmuir, 2014, 30, 13949-13955.	3.5	9
14	Semi-rational approach for converting a GH1 Â-glycosidase into a Â-transglycosidase. Protein Engineering, Design and Selection, 2014, 27, 13-19.	2.1	65
15	Alkoxyamino glycoside acceptors for the regioselective synthesis of oligosaccharides using glycosynthases and transglycosidases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 448-451.	2.2	20
16	Conserved Water Molecules in Family 1 Glycosidases: A DXMS and Molecular Dynamics Study. Biochemistry, 2013, 52, 5900-5910.	2.5	34
17	Engineering of a phosphorylatable tag for specific protein binding on zirconium phosphonate based microarrays. Journal of Biological Inorganic Chemistry, 2012, 17, 399-407.	2.6	16
18	Correlation between thermostability and stability of glycosidases in ionic liquid. Biotechnology Letters, 2011, 33, 1215-1219.	2.2	46

CHARLES TELLIER

#	Article	IF	CITATIONS
19	An expeditious and efficient synthesis of β-d-galactopyranosyl-(1→3)-d-N-acetylglucosamine (lacto-N-biose) using a glycosynthase from Thermus thermophilus as a catalyst. Tetrahedron: Asymmetry, 2009, 20, 1243-1246.	1.8	16
20	Bisphosphonate Adaptors for Specific Protein Binding on Zirconium Phosphonate-based Microarrays. Bioconjugate Chemistry, 2009, 20, 2270-2277.	3.6	36
21	Engineering of glucoside acceptors for the regioselective synthesis of β-(1→3)-disaccharides with glycosynthases. Carbohydrate Research, 2008, 343, 2939-2946.	2.3	17
22	Towards Zirconium Phosphonate-Based Microarrays for Probing DNAâ^'Protein Interactions: Critical Influence of the Location of the Probe Anchoring Groups. Journal of the American Chemical Society, 2008, 130, 6243-6251.	13.7	83
23	Poly(dG) Spacers Lead to Increased Surface Coverage of DNA Probes: An XPS Study of Oligonucleotide Binding to Zirconium Phosphonate Modified Surfaces. Langmuir, 2008, 24, 7394-7399.	3.5	22
24	Digital screening methodology for the directed evolution of transglycosidases. Protein Engineering, Design and Selection, 2008, 22, 37-44.	2.1	35
25	Directed Evolution of the α-l-Fucosidase from Thermotoga maritima into an α-l-Transfucosidase. Biochemistry, 2007, 46, 1022-1033.	2.5	88
26	Converting a $\hat{1}^2$ -Glycosidase into a $\hat{1}^2$ -Transglycosidase by Directed Evolution. Journal of Biological Chemistry, 2005, 280, 37088-37097.	3.4	89
27	New Approach to Oligonucleotide Microarrays Using Zirconium Phosphonate-Modified Surfaces. Journal of the American Chemical Society, 2004, 126, 1497-1502.	13.7	124
28	Identification by saturation mutagenesis of a single residue involved in the alpha-galactosidase AgaB regioselectivity. Glycoconjugate Journal, 2001, 18, 457-464.	2.7	11
29	Modulation of the regioselectivity of a Bacillus alpha-galactosidase by directed evolution. Glycoconjugate Journal, 2001, 18, 215-223.	2.7	25