Shelley D Minteer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5166300/shelley-d-minteer-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 15,787 109 397 h-index g-index citations papers 18,581 8.9 487 7.36 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
397	Investigating the Electroactivity of Salinivibrio sp. EAGSL, through Electroanalytical Techniques and Genomic Insights. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 025501	3.9	O
396	One-Pot Bioelectrocatalytic Conversion of Chemically Inert Hydrocarbons to Imines <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	6
395	Understanding metabolic bioelectrocatalysis of the purple bacterium Rhodobacter capsulatus through substrate modulation. <i>Electrochimica Acta</i> , 2022 , 416, 140291	6.7	1
394	Electrochemical Cascade Reactions for Electro-Organic Synthesis. <i>Current Opinion in Electrochemistry</i> , 2022 , 101049	7.2	О
393	Cobalt-electrocatalytic HAT for functionalization of unsaturated CL bonds. <i>Nature</i> , 2022 , 605, 687-695	50.4	7
392	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. <i>Chemical Reviews</i> , 2021 ,	68.1	20
391	Critical role of structural order in bipolar redox-active molecules for organic redox flow batteries. Journal of Materials Chemistry A, 2021 , 9, 23563-23573	13	1
390	Materials Approaches for Improving Electrochemical Sensor Performance. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 11820-11834	3.4	4
389	A self-powered glucose biosensor device based on microfluidics using human blood. <i>Journal of Power Sources</i> , 2021 , 515, 230631	8.9	4
388	A Self-Powered Minimalistic Glucometer: A Lean Approach to Sustainable Single-Use Point-of-Care Devices. <i>Advanced Materials Technologies</i> , 2021 , 6, 2001051	6.8	4
387	Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD Regeneration in Mediated NAD-Dependent Bioelectrocatalysis. <i>ACS Applied Materials & ACS Applied Materials</i>	9.5	3
386	Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. <i>Annual Review of Physical Chemistry</i> , 2021 , 72, 467-488	15.7	8
385	Unveiling complete lactate oxidation through a hybrid catalytic cascade. <i>Electrochimica Acta</i> , 2021 , 376, 138044	6.7	4
384	Recent Trends and Advances in Microbial Electrochemical Sensing Technologies: An Overview. <i>Current Opinion in Electrochemistry</i> , 2021 , 100762	7.2	10
383	An engineered, non-diazotrophic cyanobacterium and its application in bioelectrochemical nitrogen fixation. <i>Cell Reports Physical Science</i> , 2021 , 2, 100444	6.1	7
382	Bioelectrocatalytic Conversion of N2: From Chemically Inert Gas to Chiral Chemicals. <i>ECS Meeting Abstracts</i> , 2021 , MA2021-01, 1757-1757	О	
381	-Ammonium Ylide Mediators for Electrochemical C-H Oxidation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7859-7867	16.4	17

(2021-2021)

380	Unbranched Hybrid Conducting Redox Polymers for Intact Chloroplast-Based Photobioelectrocatalysis. <i>Langmuir</i> , 2021 ,	4	4
379	Vibrational Spectroscopic Monitoring of the Gelation Transition in Nafion Ionomer Dispersions. <i>Applied Spectroscopy</i> , 2021 , 75, 376-384	3.1	1
378	Electrochemical Advances in Non-Aqueous Redox Flow Batteries. <i>Israel Journal of Chemistry</i> , 2021 , 61, 101-112	3.4	10
377	Analyzing mechanisms in Co(i) redox catalysis using a pattern recognition platform. <i>Chemical Science</i> , 2021 , 12, 4771-4778	9.4	8
376	The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing. <i>Biosensors</i> , 2021 , 11,	5.9	3
375	Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. <i>Biosensors</i> , 2021 , 11,	5.9	3
374	Bipolar Redox-Active Molecules in Non-Aqueous Organic Redox Flow Batteries: Status and Challenges. <i>ChemElectroChem</i> , 2021 , 8, 1215-1232	4.3	12
373	Three-Dimensional Glucose/Oxygen Biofuel Cells Based on Enzymes Embedded in Tetrabutylammonium Modified Nafion. <i>Journal of Electrochemical Energy Conversion and Storage</i> , 2021 , 18,	2	2
372	Understanding the Properties of Phenazine Mediators that Promote Extracellular Electron Transfer in Escherichia coli. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 025503	3.9	3
371	Advances in Electrochemical Modification Strategies of 5-Hydroxymethylfurfural. <i>ChemSusChem</i> , 2021 , 14, 1674-1686	8.3	11
370	Substrate Channeling by a Rationally Designed Fusion Protein in a Biocatalytic Cascade. <i>Jacs Au</i> , 2021 , 1, 1187-1197		1
369	ACS Measurement Science Au: The First Issue Exemplifies Diversity of Scope and Excellence in Measurement Science Research. <i>ACS Measurement Science Au</i> , 2021 , 1, 1-2		
368	Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021,	27.8	10
367	Calendar aging of silicon-containing batteries. <i>Nature Energy</i> , 2021 , 6, 866-872	62.3	28
366	Using structure-function relationships to understand the mechanism of phenazine-mediated extracellular electron transfer in. <i>IScience</i> , 2021 , 24, 103033	6.1	3
365	Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries. <i>Nanotechnology</i> , 2021 , 32,	3.4	5
364	A silver assist for microbial fuel cell power. <i>Science</i> , 2021 , 373, 1308-1309	33.3	O
363	Adapting confocal Raman microscopy for in situ studies of redox transformations at electrode-electrolyte interfaces. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 896, 115207	4.1	1

362	Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. <i>Photochemical and Photobiological Sciences</i> , 2021 , 20, 1333-1356	4.2	3
361	Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. <i>Current Opinion in Biotechnology</i> , 2021 , 73, 14-21	11.4	5
360	Nanopore-based measurement of the interaction of P450cam monooxygenase and putidaredoxin at the single-molecule level. <i>Faraday Discussions</i> , 2021 ,	3.6	3
359	Bioelectrical understanding and engineering of cell biology. <i>Journal of the Royal Society Interface</i> , 2020 , 17, 20200013	4.1	17
358	Elucidating the Mechanism behind the Bionanomanufacturing of Gold Nanoparticles Using <i>ACS Applied Bio Materials</i> , 2020 , 3, 3859-3867	4.1	1
357	Electroenzymatic Nitrogen Fixation Using a MoFe Protein System Immobilized in an Organic Redox Polymer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16511-16516	16.4	9
356	Nitrogenase Bioelectrocatalysis: ATP-Independent Ammonia Production Using a Redox Polymer/MoFe Protein System. <i>ACS Catalysis</i> , 2020 , 10, 6854-6861	13.1	13
355	Advancing the fundamental understanding and practical applications of photo-bioelectrocatalysis. <i>Chemical Communications</i> , 2020 , 56, 8553-8568	5.8	14
354	Elektroenzymatische Stickstofffixierung unter Verwendung eines MoFe-Proteinsystems immobilisiert in einem organischen Redoxpolymer. <i>Angewandte Chemie</i> , 2020 , 132, 16654-16659	3.6	О
353	Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12550-1255	7 ^{11.5}	103
352	Electrochemical Reduction of [Ni(Mebpy)3]2+: Elucidation of the Redox Mechanism by Cyclic Voltammetry and Steady-State Voltammetry in Low Ionic Strength Solutions. <i>ChemElectroChem</i> , 2020 , 7, 1473-1479	4.3	5
351	MoS2 nanostructured materials for electrode modification in the development of a laccase based amperometric biosensor for non-invasive dopamine detection. <i>Microchemical Journal</i> , 2020 , 155, 10479	2 ^{4.8}	15
350	Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8969-8973	16.4	6
349	Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. <i>Angewandte Chemie</i> , 2020 , 132, 9054-9058	3.6	0
348	Enzymatic Bioelectrocatalysis for Enzymology Applications. <i>ChemElectroChem</i> , 2020 , 7, 2222-2226	4.3	3
347	Bromide-Regulated Anisotropic Growth of Desert-Rose-Like Nanostructured Gold onto Carbon Fiber Electrodes as Freestanding Electrocatalysts. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7560-7571	6.1	2
346	Enhanced electrochemical oxidation of ethanol using a hybrid catalyst cascade architecture containing pyrene-TEMPO, oxalate decarboxylase and carboxylated multi-walled carbon nanotube. <i>Biosensors and Bioelectronics</i> , 2020 , 154, 112077	11.8	10
345	Ionic Liquid Stabilized 2,2,6,6-Tetramethylpiperidine 1-Oxyl Catalysis for Alcohol Oxidation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 4489-4498	8.3	8

(2020-2020)

344	Standalone operation of an EGOFET for ultra-sensitive detection of HIV. <i>Biosensors and Bioelectronics</i> , 2020 , 156, 112103	11.8	35
343	Breath biosensing: using electrochemical enzymatic sensors for detection of biomarkers in human breath. <i>Current Opinion in Electrochemistry</i> , 2020 , 23, 26-30	7.2	14
342	Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition. <i>Chemistry - A European Journal</i> , 2020 , 26, 5369-5	3 1 73	23
341	Pyrene-Based Noncovalent Immobilization of Nitrogenase on Carbon Surfaces. <i>ChemBioChem</i> , 2020 , 21, 1729-1732	3.8	8
340	Unveiling salinity effects on photo-bioelectrocatalysis through combination of bioinformatics and electrochemistry. <i>Electrochimica Acta</i> , 2020 , 337, 135731-135731	6.7	11
339	The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. <i>Nature Catalysis</i> , 2020 , 3, 225-244	36.5	90
338	Bioelectrocatalytic Conversion from N to Chiral Amino Acids in a H/EKeto Acid Enzymatic Fuel Cell. Journal of the American Chemical Society, 2020 , 142, 4028-4036	16.4	25
337	Biphasic Bioelectrocatalytic Synthesis of Chiral EHydroxy Nitriles. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 2808-2808	Ο	
336	Spatially Directed Functionalization by Co-electropolymerization of Two 3,4-ethylenedioxythiophene Derivatives on Microelectrodes within an Array. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 166511	3.9	
335	Hybrid enzymatic and organic catalyst cascade for enhanced complete oxidation of ethanol in an electrochemical micro-reactor device. <i>Electrochimica Acta</i> , 2020 , 331, 135254	6.7	8
334	Direct bioelectrocatalysis by redox enzymes immobilized in electrostatically condensed oppositely charged polyelectrolyte electrode coatings. <i>Analyst, The</i> , 2020 , 145, 1250-1257	5	6
333	Cytochrome c oxidase oxygen reduction reaction induced by cytochrome c on nickel-coordination surfaces based on graphene oxide in suspension. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2020 , 1861, 148262	4.6	1
332	Chloroplast biosolar cell and self-powered herbicide monitoring. <i>Chemical Communications</i> , 2020 , 56, 13161-13164	5.8	2
331	Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. <i>Chemical Reviews</i> , 2020 , 120, 12903-12993	68.1	86
330	Recent advancements in rational design of non-aqueous organic redox flow batteries. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 4370-4389	5.8	18
329	In-situ and controllable synthesis of graphene-gold nanoparticles/molecularly imprinted polymers composite modified electrode for sensitive and selective rutin detection. <i>Microchemical Journal</i> , 2020 , 158, 105254	4.8	9
328	Effects of the cross-linker on the performance and stability of enzymatic electrocatalytic films of glucose oxidase and dimethylferrocene-modified linear poly(ethyleneimine). <i>Electrochimica Acta</i> , 2020 , 337, 135782	6.7	6
327	Electroreductive Olefin-Ketone Coupling. <i>Journal of the American Chemical Society</i> , 2020 , 142, 20979-20	9864	30

326	Using nature's blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369,	33.3	124
325	Draft Genome Sequence of sp. Strain EAGSL, a Biotechnologically Relevant Halophilic Microorganism. <i>Microbiology Resource Announcements</i> , 2020 , 9,	1.3	2
324	Purple Bacteria and 3D Redox Hydrogels for Bioinspired Photo-bioelectrocatalysis. <i>ChemSusChem</i> , 2020 , 13, 230-237	8.3	15
323	Modified biochar for phosphate adsorption in environmentally relevant conditions. <i>Chemical Engineering Journal</i> , 2020 , 380, 122375	14.7	61
322	Biphasic Bioelectrocatalytic Synthesis of Chiral EHydroxy Nitriles. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8374-8382	16.4	20
321	EditorsIChoiceReviewExploration of Computational Approaches for Understanding Microbial Electrochemical Systems: Opportunities and Future Directions. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 065502	3.9	12
320	Online self-powered Cr(VI) monitoring with autochthonous Pseudomonas and a bio-inspired redox polymer. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 6449-6457	4.4	10
319	Performance comparison of different configurations of Glucose/O2 microfluidic biofuel cell stack. <i>Journal of Power Sources</i> , 2019 , 414, 150-157	8.9	21
318	Energy Selects. ACS Energy Letters, 2019, 4, 2351-2352	20.1	1
317	Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase. Journal of the American Chemical Society, 2019 , 141, 17150-17157	16.4	22
316	Tuning purple bacteria salt-tolerance for photobioelectrochemical systems in saline environments. <i>Faraday Discussions</i> , 2019 , 215, 15-25	3.6	13
315	Tricarboxylic acid metabolon. <i>Methods in Enzymology</i> , 2019 , 617, 29-43	1.7	5
314	Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics. <i>Lab on A Chip</i> , 2019 , 19, 2589-2597	7.2	18
313	Biological approaches to artificial photosynthesis: general discussion. <i>Faraday Discussions</i> , 2019 , 215, 66-83	3.6	
312	Synthetic approaches to artificial photosynthesis: general discussion. <i>Faraday Discussions</i> , 2019 , 215, 242-281	3.6	4
311	Transitioning from batch to flow hypersaline microbial fuel cells. <i>Electrochimica Acta</i> , 2019 , 317, 494-50	1 6.7	10
310	Markov-State Transition Path Analysis of Electrostatic Channeling. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 15284-15292	3.8	9
309	A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. <i>Chemical Science</i> , 2019 , 10, 6404-6422	9.4	136

(2019-2019)

308	Results in Enhanced Bioelectrocatalytic Operational Stability. <i>ACS Applied Materials & Amp;</i> Interfaces, 2019 , 11, 20022-20028	9.5	5
307	Confocal Raman Microscopy Investigation of Self-Assembly of Hybrid Phospholipid Bilayers within Individual Porous Silica Chromatographic Particles. <i>Analytical Chemistry</i> , 2019 , 91, 7790-7797	7.8	2
306	Phthalocyanines as a IAdsorption Strategy to Immobilize Catalyst on Carbon for Electrochemical Synthesis. <i>Synlett</i> , 2019 , 30, 1187-1193	2.2	2
305	Modular Microfluidic Paper-Based Devices for Multi-Modal Cascade Catalysis. <i>ChemElectroChem</i> , 2019 , 6, 2448-2455	4.3	5
304	Efficient NADH Regeneration by a Redox Polymer-Immobilized Enzymatic System. <i>ACS Catalysis</i> , 2019 , 9, 5486-5495	13.1	58
303	Extracellular Electron Transfer: Following Nature: Bioinspired Mediation Strategy for Gram-Positive Bacterial Cells (Adv. Energy Mater. 16/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970055	21.8	3
302	Electrochemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. Journal of the American Chemical Society, 2019 , 141, 6392-6402	16.4	152
301	Redox polymers in electrochemical systems: From methods of mediation to energy storage. <i>Current Opinion in Electrochemistry</i> , 2019 , 15, 1-6	7.2	56
300	Upgraded Bioelectrocatalytic N Fixation: From N to Chiral Amine Intermediates. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4963-4971	16.4	41
299	Following Nature: Bioinspired Mediation Strategy for Gram-Positive Bacterial Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1900215	21.8	17
298	Microbial amperometric biosensor for online herbicide detection: Photocurrent inhibition of Anabaena variabilis. <i>Electrochimica Acta</i> , 2019 , 302, 102-108	6.7	42
297	Spectro-Electrochemical Microfluidic Platform for Monitoring Multi-Step Cascade Reactions. <i>ChemElectroChem</i> , 2019 , 6, 246-251	4.3	9
296	Enhancement of Electrocatalytic Oxidation of Glycerol by Plasmonics. ChemElectroChem, 2019, 6, 241-24	45 3	13
295	Strategies for Bioelectrochemical CO Reduction. <i>Chemistry - A European Journal</i> , 2019 , 25, 14258-14266	4.8	28
294	Investigating the Nature of the Active Sites for the CO2 Reduction Reaction on Carbon-Based Electrocatalysts. <i>ACS Catalysis</i> , 2019 , 9, 7668-7678	13.1	34
293	Bioinspired architecture of a hybrid bifunctional enzymatic/organic electrocatalyst for complete ethanol oxidation. <i>Bioelectrochemistry</i> , 2019 , 130, 107331	5.6	11
292	From Biological to Biomimetic: Immobilizing Electrocatalysts for H2/O2 Fuel Cells. <i>Joule</i> , 2019 , 3, 1819-	1 28/2 .8	3
291	Mechanistic Studies into the Oxidative Addition of Co(I) Complexes: Combining Electroanalytical Techniques with Parameterization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18877-18889	16.4	26

290	Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. <i>Science</i> , 2019 , 363, 838-845	33.3	166
289	Nitrogenase Bioelectrochemistry for Synthesis Applications. <i>Accounts of Chemical Research</i> , 2019 , 52, 3351-3360	24.3	36
288	Infrared Microscopy as a Probe of Composition within a Model Biofuel Cell Electrode Prepared from Trametes versicolor Laccase. <i>ChemElectroChem</i> , 2019 , 6, 818-826	4.3	2
287	Investigating the Role of Ligand Electronics on Stabilizing Electrocatalytically Relevant Low-Valent Co(I) Intermediates. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1382-1392	16.4	40
286	Understanding Biophotocurrent Generation in Photosynthetic Purple Bacteria. <i>ACS Catalysis</i> , 2019 , 9, 867-873	13.1	29
285	Single Layer Graphene for Estimation of Axial Spatial Resolution in Confocal Raman Microscopy Depth Profiling. <i>Analytical Chemistry</i> , 2019 , 91, 1049-1055	7.8	14
284	Recent Developments in Nitrogen Reduction Catalysts: A Virtual Issue. ACS Energy Letters, 2019, 4, 163-	- 1 2661	68
283	Clean energy from human sweat using an enzymatic patch. <i>Journal of Power Sources</i> , 2019 , 412, 496-504	4 8.9	22
282	Molybdenum-Dependent Formate Dehydrogenase for Formate Bioelectrocatalysis in a Formate/O2Enzymatic Fuel Cell. <i>Journal of the Electrochemical Society</i> , 2018 , 165, H109-H113	3.9	18
281	Sustainable Bioelectrosynthesis of the Bioplastic Polyhydroxybutyrate: Overcoming Substrate Requirement for NADH Regeneration. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 4909-4915	8.3	21
2 80	Creating a Low-Potential Redox Polymer for Efficient Electroenzymatic CO2 Reduction. <i>Angewandte Chemie</i> , 2018 , 130, 6692-6696	3.6	25
279	Creating a Low-Potential Redox Polymer for Efficient Electroenzymatic CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6582-6586	16.4	52
278	Hypersaline Microbial Self-Powered Biosensor with Increased Sensitivity. <i>Journal of the Electrochemical Society</i> , 2018 , 165, H251-H254	3.9	12
277	Catalytic materials for biofuel conversion. <i>International Materials Reviews</i> , 2018 , 63, 241-256	16.1	8
276	High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. <i>ACS Central Science</i> , 2018 , 4, 189-196	16.8	82
275	Enzymatic Electrosynthesis of Alkanes by Bioelectrocatalytic Decarbonylation of Fatty Aldehydes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2404-2408	16.4	21
274	Enzymatic Electrosynthesis of Alkanes by Bioelectrocatalytic Decarbonylation of Fatty Aldehydes. <i>Angewandte Chemie</i> , 2018 , 130, 2428-2432	3.6	4
273	Alginate-Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells. <i>ChemBioChem</i> , 2018 , 19, 1162	3.8	21

(2018-2018)

272	Electroenzymatic C-C Bond Formation from CO. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5041-5044	16.4	39
271	Fast and efficient removal of chromium (VI) anionic species by a reusable chitosan-modified multi-walled carbon nanotube composite. <i>Chemical Engineering Journal</i> , 2018 , 339, 259-267	14.7	98
270	Developing ethanol bioanodes using a hydrophobically modified linear polyethylenimine hydrogel for immobilizing an enzyme cascade. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 812, 153-158	4.1	12
269	Challenges for successful implantation of biofuel cells. <i>Bioelectrochemistry</i> , 2018 , 124, 57-72	5.6	114
268	Preparation of conductive carbon paper based on carbon nanofibers and polypyrrole for biofuel cell application. <i>Journal of Physics: Conference Series</i> , 2018 , 1052, 012066	0.3	O
267	Sweat as energy source using an enzymatic microfluidic fuel cell. <i>Journal of Physics: Conference Series</i> , 2018 , 1052, 012142	0.3	1
266	A new era for electron bifurcation. Current Opinion in Chemical Biology, 2018, 47, 32-38	9.7	39
265	Cascade Kinetics of an Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo. <i>ACS Catalysis</i> , 2018 , 8, 7719-7726	13.1	9
264	'Plug-and-Power' Point-of-Care diagnostics: A novel approach for self-powered electronic reader-based portable analytical devices. <i>Biosensors and Bioelectronics</i> , 2018 , 118, 88-96	11.8	14
263	A sustainable adsorbent for phosphate removal: modifying multi-walled carbon nanotubes with chitosan. <i>Journal of Materials Science</i> , 2018 , 53, 12641-12649	4.3	36
262	Catalysts for nitrogen reduction to ammonia. <i>Nature Catalysis</i> , 2018 , 1, 490-500	36.5	608
261	Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives. <i>Bioelectrochemistry</i> , 2018 , 120, 127-137	5.6	49
2 60	Bioinspired design of a hybrid bifunctional enzymatic/organic electrocatalyst for site selective alcohol oxidation. <i>Chemical Communications</i> , 2018 , 54, 491-494	5.8	13
259	Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling. <i>Protein Science</i> , 2018 , 27, 463-471	6.3	20
258	Self-Powered Biosensors. ACS Sensors, 2018, 3, 44-53	9.2	171
257	Electrometabolic Pathways: Recent Developments in Bioelectrocatalytic Cascades. <i>Topics in Current Chemistry</i> , 2018 , 376, 43	7.2	6
256	Lag Time Spectrophotometric Assay for Studying Transport Limitation in Immobilized Enzymes. <i>ACS Omega</i> , 2018 , 3, 11945-11949	3.9	0
255	Processes at nanoelectrodes: general discussion. <i>Faraday Discussions</i> , 2018 , 210, 235-265	3.6	1

254	Nitrogenase Bioelectrocatalysis: From Understanding Electron-Transfer Mechanisms to Energy Applications. <i>ACS Energy Letters</i> , 2018 , 3, 2736-2742	20.1	39
253	Hybrid catalyst cascade architecture enhancement for complete ethanol electrochemical oxidation. <i>Biosensors and Bioelectronics</i> , 2018 , 121, 281-286	11.8	20
252	Energy conversion at nanointerfaces: general discussion. <i>Faraday Discussions</i> , 2018 , 210, 333-351	3.6	
251	Control of electron transfer in nitrogenase. <i>Current Opinion in Chemical Biology</i> , 2018 , 47, 54-59	9.7	26
250	Improved performance of a paper-based glucose fuel cell by capillary induced flow. <i>Electrochimica Acta</i> , 2018 , 282, 336-342	6.7	26
249	Pyrene hydrogel for promoting direct bioelectrochemistry: ATP-independent electroenzymatic reduction of N. <i>Chemical Science</i> , 2018 , 9, 5172-5177	9.4	40
248	Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles. <i>Analytical Chemistry</i> , 2018 , 90, 7048-7055	7.8	6
247	Product Analysis of Operating an Ethanol/O2Biofuel Cell Shows the Synergy between Enzymes within an Enzymatic Cascade. <i>Journal of the Electrochemical Society</i> , 2018 , 165, H575-H579	3.9	14
246	Rechargeable membraneless glucose biobattery: Towards solid-state cathodes for implantable enzymatic devices. <i>Journal of Power Sources</i> , 2017 , 343, 103-108	8.9	20
245	Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H /N Fuel Cell. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2680-2683	16.4	155
244	Bioelectrochemical Haber B osch Process: An Ammonia-Producing H2/N2 Fuel Cell. <i>Angewandte Chemie</i> , 2017 , 129, 2724-2727	3.6	22
243	Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2924-2927	16.4	118
242	Raman Spectroscopy Reveals Selective Interactions of Cytochrome c with Cardiolipin That Correlate with Membrane Permeability. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3851-3860	16.4	34
241	Photobioelectrocatalysis of Intact Chloroplasts for Solar Energy Conversion. <i>ACS Catalysis</i> , 2017 , 7, 225	7 <u>1</u> 3265	38
240	Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes. <i>ChemSusChem</i> , 2017 , 10, 2053-2058	8.3	27
239	Substrate Channeling in an Artificial Metabolon: A Molecular Dynamics Blueprint for an Experimental Peptide Bridge. <i>ACS Catalysis</i> , 2017 , 7, 2486-2493	13.1	33
238	Improving the Performance of Methanol Biofuel Cells Utilizing an Enzyme Cascade Bioanode with DNA-Bridged Substrate Channeling. <i>ACS Energy Letters</i> , 2017 , 2, 1435-1438	20.1	21
237	The In Vivo Potential-Regulated Protective Protein of Nitrogenase in Azotobacter vinelandii Supports Aerobic Bioelectrochemical Dinitrogen Reduction In Vitro. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9044-9052	16.4	28

236	Bioelectrocatalytic NAD/NADH inter-conversion: transformation of an enzymatic fuel cell into an enzymatic redox flow battery. <i>Chemical Communications</i> , 2017 , 53, 8411-8414	5.8	20
235	Rational Combination of Promiscuous Enzymes Yields a Versatile Enzymatic Fuel Cell with Improved Coulombic Efficiency. <i>Journal of the Electrochemical Society</i> , 2017 , 164, H3073-H3082	3.9	16
234	PrefaceIJES Focus Issue on Biological Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2017 , 164, Y3-Y4	3.9	
233	Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii. <i>Chemical Communications</i> , 2017 , 53, 5368-5371	5.8	16
232	Role of Nitrogenase and Ferredoxin in the Mechanism of Bioelectrocatalytic Nitrogen Fixation by the Cyanobacteria Anabaena variabilis SA-1 Mutant Immobilized on Indium Tin Oxide (ITO) Electrodes. <i>Electrochimica Acta</i> , 2017 , 232, 396-403	6.7	18
231	Cholesterol as a Promising Alternative Energy Source: Bioelectrocatalytic Oxidation Using NAD-Dependent Cholesterol Dehydrogenase in Human Serum. <i>Journal of the Electrochemical Society</i> , 2017 , 164, H3024-H3029	3.9	11
230	Halotolerant extremophile bacteria from the Great Salt Lake for recycling pollutants in microbial fuel cells. <i>Journal of Power Sources</i> , 2017 , 356, 310-318	8.9	41
229	Methods in Biological Fuel Cells 2017 , 743-755		2
228	Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. <i>Journal of Power Sources</i> , 2017 , 342, 546-552	8.9	37
227	Polymer-immobilized, hybrid multi-catalyst architecture for enhanced electrochemical oxidation of glycerol. <i>Chemical Communications</i> , 2017 , 53, 10310-10313	5.8	23
226	Mechanism of Nitrogenase H Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13518-13	5 2 44	38
225	Enhanced Bioelectrocatalysis of Shewanella oneidensis MR-1 by a Naphthoquinone Redox Polymer. <i>ACS Energy Letters</i> , 2017 , 2, 1947-1951	20.1	24
224	Enzyme cascades in biofuel cells. Current Opinion in Electrochemistry, 2017, 5, 114-120	7.2	29
223	Investigating extracellular electron transfer of Rikenella microfusus: a recurring bacterium in mixed-species biofilms. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 1568-1572	5.8	5
222	Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage. <i>Analytical Chemistry</i> , 2017 , 89, 13290-13298	7.8	6
221	Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. <i>Journal of the Royal Society Interface</i> , 2017 , 14,	4.1	100
220	Micellar Polymer Encapsulation of Enzymes. <i>Methods in Molecular Biology</i> , 2017 , 1504, 93-108	1.4	4
219	Enzymatic Bioelectrosynthetic Ammonia Production: Recent Electrochemistry of Nitrogenase, Nitrate Reductase, and Nitrite Reductase. <i>ChemPlusChem</i> , 2017 , 82, 513-521	2.8	28

218	Bioelectrochemical Systems as a Multipurpose Biosensing Tool: Present Perspective and Future Outlook. <i>ChemElectroChem</i> , 2017 , 4, 834-842	4.3	44
217	Introduction to the Field of Enzyme Immobilization and Stabilization. <i>Methods in Molecular Biology</i> , 2017 , 1504, 1-7	1.4	14
216	Wiring of Photosystem I and Hydrogenase on an Electrode for Photoelectrochemical H2 Production by using Redox Polymers for Relatively Positive Onset Potential. <i>ChemElectroChem</i> , 2017 , 4, 90-95	4.3	44
215	Hybrid Bioelectrocatalytic Reduction of Oxygen at Anthracene-modified Multi-walled Carbon Nanotubes Decorated with Ni90Pd10 Nanoparticles. <i>Electrochimica Acta</i> , 2017 , 251, 195-202	6.7	3
214	Micellar Enzymology for Thermal, pH, and Solvent Stability. <i>Methods in Molecular Biology</i> , 2017 , 1504, 19-23	1.4	2
213	A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. <i>Biosensors and Bioelectronics</i> , 2016 , 77, 26-31	11.8	115
212	Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2016 , 1857, 621-624	4.6	5
211	Enzymatic biofuel cells: 30 years of critical advancements. <i>Biosensors and Bioelectronics</i> , 2016 , 76, 91-10)2 11.8	362
210	Direct Evidence for Metabolon Formation and Substrate Channeling in Recombinant TCA Cycle Enzymes. <i>ACS Chemical Biology</i> , 2016 , 11, 2847-2853	4.9	58
209	Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip. <i>Journal of Power Sources</i> , 2016 , 326, 410-416	8.9	41
208	Hybrid Glucose/O2 Biobattery and Supercapacitor Utilizing a Pseudocapacitive Dimethylferrocene Redox Polymer at the Bioanode. <i>ACS Energy Letters</i> , 2016 , 1, 380-385	20.1	47
207	Halide-regulated growth of electrocatalytic metal nanoparticles directly onto a carbon paper electrode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17154-17162	13	26
206	Gold Nanofiber-Based Electrodes for Plasmon-Enhanced Electrocatalysis. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H1132-H1135	3.9	14
205	Improving O reduction at an enzymatic biocathode: mimicking the lungs. <i>Chemical Communications</i> , 2016 , 52, 13299-13302	5.8	2
204	Mitochondrial Inner Membrane Biomimic for the Investigation of Electron Transport Chain Supercomplex Bioelectrocatalysis. <i>ACS Catalysis</i> , 2016 , 6, 4995-4999	13.1	19
203	Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein. <i>Energy and Environmental Science</i> , 2016 , 9, 2550-2554	35.4	139
202	Isothermal titration calorimetry uncovers substrate promiscuity of bicupin oxalate oxidase from. <i>Biochemistry and Biophysics Reports</i> , 2016 , 5, 396-400	2.2	8
201	Understanding the Role of Mitochondrial Health in the Mechanism of Mitochondrial Bioelectrocatalysis. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H292-H298	3.9	6

200	Preparation and properties of DMFC membranes from polymer-brush nanoparticles. <i>Solid State Ionics</i> , 2016 , 288, 154-159	3.3	4
199	TEMPO as a Promising Electrocatalyst for the Electrochemical Oxidation of Hydrogen Peroxide in Bioelectronic Applications. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H3001-H3005	3.9	16
198	DNA Redox Hydrogels: Improving Mediated Enzymatic Bioelectrocatalysis. ACS Catalysis, 2016, 6, 2603-	2607	29
197	Substrate channelling as an approach to cascade reactions. <i>Nature Chemistry</i> , 2016 , 8, 299-309	17.6	399
196	Laccase Inhibition by Arsenite/Arsenate: Determination of Inhibition Mechanism and Preliminary Application to a Self-Powered Biosensor. <i>Analytical Chemistry</i> , 2016 , 88, 3243-8	7.8	42
195	Layer-by-Layer Assembly of Carbon Nanotubes Modified with Invertase/Glucose Dehydrogenase Cascade for Sucrose/O2Biofuel Cell. <i>Journal of the Electrochemical Society</i> , 2016 , 163, F449-F454	3.9	22
194	Tailoring Biointerfaces for Electrocatalysis. <i>Langmuir</i> , 2016 , 32, 2291-301	4	50
193	NAD-dependent dehydrogenase bioelectrocatalysis: the ability of a naphthoquinone redox polymer to regenerate NAD. <i>Chemical Communications</i> , 2016 , 52, 1147-50	5.8	34
192	Potential application of laccase from Pycnoporus sanguineus in methanol/O2 biofuel cells. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 765, 2-7	4.1	12
191	Effect of Riboflavin Metabolites on Mitochondrial Electrochemistry. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H1047-H1052	3.9	3
190	A Paper-based Mitochondrial Electrochemical Biosensor for Pesticide Detection. <i>Electroanalysis</i> , 2016 , 28, 854-859	3	26
189	A Self-Sufficient Nitrate Groundwater Remediation System:Geobacter SulfurreducensMicrobial Fuel Cell Fed by Hydrogen from a Water Electrolyzer. <i>Journal of the Electrochemical Society</i> , 2016 , 163, F651-F656	3.9	6
188	Modeling Carbon Nanotube Connectivity and Surface Activity in a Contact Lens Biofuel Cell. <i>Electrochimica Acta</i> , 2016 , 203, 30-40	6.7	30
187	The use of engineered protein materials in electrochemical devices. <i>Experimental Biology and Medicine</i> , 2016 , 241, 980-5	3.7	8
186	Membraneless enzymatic ethanol/O2 fuel cell: Transitioning from an air-breathing Pt-based cathode to a bilirubin oxidase-based biocathode. <i>Journal of Power Sources</i> , 2016 , 324, 208-214	8.9	31
185	Regeneration of the NADH Cofactor by a Rhodium Complex Immobilized on Multi-Walled Carbon Nanotubes. <i>Journal of the Electrochemical Society</i> , 2015 , 162, H102-H107	3.9	23
184	Krebs cycle metabolon formation: metabolite concentration gradient enhanced compartmentation of sequential enzymes. <i>Chemical Communications</i> , 2015 , 51, 1244-7	5.8	43
183	Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium. <i>Journal of Power Sources</i> , 2015 , 284, 27-37	8.9	42

182	Rational design of quinones for high power density biofuel cells. <i>Chemical Science</i> , 2015 , 6, 4867-4875	9.4	153
181	Investigating DNA hydrogels as a new biomaterial for enzyme immobilization in biobatteries. <i>Chemical Communications</i> , 2015 , 51, 13071-3	5.8	19
180	The photobioelectrochemical activity of thylakoid bioanodes is increased via photocurrent generation and improved contacts by membrane-intercalating conjugated oligoelectrolytes. <i>Energy and Environmental Science</i> , 2015 , 8, 2698-2706	35.4	37
179	Co-immobilization of gold nanoparticles with glucose oxidase to improve bioelectrocatalytic glucose oxidation. <i>Journal of Power Sources</i> , 2015 , 285, 493-498	8.9	22
178	Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum. <i>Bioelectrochemistry</i> , 2015 , 106, 56-63	5.6	76
177	High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes. <i>Biosensors and Bioelectronics</i> , 2015 , 72, 247-54	11.8	22
176	Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell. <i>Bioelectrochemistry</i> , 2015 , 106, 207-12	5.6	27
175	Krebs Cycle Metabolon: Structural Evidence of Substrate Channeling Revealed by Cross-Linking and Mass Spectrometry. <i>Angewandte Chemie</i> , 2015 , 127, 1871-1874	3.6	4
174	Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol. <i>Chemical Communications</i> , 2015 , 51, 14330-3	5.8	16
173	Paper based biofuel cells: Incorporating enzymatic cascades for ethanol and methanol oxidation. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 14661-14666	6.7	23
172	TEMPO-Modified Linear Poly(ethylenimine) for Immobilization-Enhanced Electrocatalytic Oxidation of Alcohols. <i>ACS Catalysis</i> , 2015 , 5, 5519-5524	13.1	47
171	Bioelectrochemical Study of ThermostablePycnoporus sanguineusCS43 Laccase Bioelectrodes Based on Pyrolytic Carbon Nanofibers for Bioelectrocatalytic O2Reduction. <i>ACS Catalysis</i> , 2015 , 5, 7507	-7378	24
170	Contact lens biofuel cell tested in a synthetic tear solution. <i>Biosensors and Bioelectronics</i> , 2015 , 68, 142-	-1 :4:8 8	108
169	Enhanced Reduced Nicotinamide Adenine Dinucleotide electrocatalysis onto multi-walled carbon nanotubes-decorated gold nanoparticles and their use in hybrid biofuel cell. <i>Journal of Power Sources</i> , 2015 , 273, 1065-1072	8.9	17
168	Promiscuous Glucose Oxidase: Electrical Energy Conversion of Multiple Polysaccharides Spanning Starch and Dairy Milk. <i>ACS Catalysis</i> , 2015 , 5, 7218-7225	13.1	24
167	Predicting Electrocatalytic Properties: Modeling Structure-Activity Relationships of Nitroxyl Radicals. <i>Journal of the American Chemical Society</i> , 2015 , 137, 16179-86	16.4	75
166	DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. <i>Chemical Communications</i> , 2015 , 51, 4782-4	5.8	56
165	Simplifying Enzymatic Biofuel Cells: Immobilized Naphthoquinone as a Biocathodic Orientational Moiety and Bioanodic Electron Mediator. <i>ACS Catalysis</i> , 2015 , 5, 1240-1244	13.1	56

(2014-2015)

164	Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1851-4	16.4	104
163	Fundamentals and applications of bioelectrocatalysis. SPR Electrochemistry, 2015, 97-132		10
162	Comparative study of thylakoids from higher plants for solar energy conversion and herbicide detection. <i>Electrochimica Acta</i> , 2014 , 140, 304-308	6.7	18
161	Bioelectrocatalytic Oxidation of Alkanes in a JP-8 Enzymatic Biofuel Cell. ACS Catalysis, 2014, 4, 4289-42	2 94 .1	13
160	Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide. <i>Chemical Communications</i> , 2014 , 50, 94-6	5.8	67
159	Hybrid enzymatic and organic electrocatalytic cascade for the complete oxidation of glycerol. Journal of the American Chemical Society, 2014 , 136, 15917-20	16.4	84
158	The effect of sulfonic acid group content in pore-filled silica colloidal membranes on their proton conductivity and direct methanol fuel cell performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12761	1 ¹³	18
157	Thylakoid direct photobioelectrocatalysis: utilizing stroma thylakoids to improve bio-solar cell performance. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 17327-31	3.6	22
156	Pyrroloquinoline Quinone-Dependent Enzymatic Bioanode: Incorporation of the Substituted Polyaniline Conducting Polymer as a Mediator. <i>ACS Catalysis</i> , 2014 , 4, 2241-2248	13.1	20
155	Ability of a haloalkaliphilic bacterium isolated from Soap Lake, Washington to generate electricity at pH 11.0 and 7% salinity. <i>Environmental Technology (United Kingdom)</i> , 2014 , 35, 1003-11	2.6	19
154	Controlled Placement of Enzymes on Carbon Nanotubes Using Comb-Branched DNA. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H3001-H3004	3.9	1
153	Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell. <i>Journal of Power Sources</i> , 2014 , 259, 25-32	8.9	26
152	Electrochemical Evaluation of Enzymatic Fuel Cells and Figures of Merit 2014 , 4-11		
151	A Monosaccharide-Based Coin-Cell Biobattery. <i>ChemElectroChem</i> , 2014 , 1, 1880-1885	4.3	5
150	Investigating the Reversible Inhibition Model of Laccase by Hydrogen Peroxide for Bioelectrocatalytic Applications. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H3011-H3014	3.9	20
149	In Recognition of Adam Heller and His Enduring Contributions to Electrochemistry. <i>Journal of the Electrochemical Society</i> , 2014 , 161, Y13-Y13	3.9	
148	Anodic Bioelectrocatalysis: From Metabolic Pathways To Metabolons 2014 , 53-79		1
147	Photobioelectrochemistry: Solar Energy Conversion and Biofuel Production with Photosynthetic Catalysts. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H647-H655	3.9	35

146	Operational Stability Assays for Bioelectrodes for Biofuel Cells: Effect of Immobilization Matrix on Laccase Biocathode Stability. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H244-H248	3.9	16
145	Nickel Cysteine Complexes as Anodic Electrocatalysts for Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, F933-F939	3.9	9
144	Characterizing Efficiency of Multi-Enzyme Cascade-Based Biofuel Cells by Product Analysis. <i>ECS Electrochemistry Letters</i> , 2014 , 3, H24-H27		8
143	Improved Bioelectrocatalytic Oxidation of Sucrose in a Biofuel Cell with an Enzyme Cascade Assembled on a DNA Scaffold. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H930-H933	3.9	26
142	Investigating the mechanism of thylakoid direct electron transfer for photocurrent generation. <i>Electrochimica Acta</i> , 2014 , 126, 68-73	6.7	27
141	Glucose oxidase progressively lowers bilirubin oxidase bioelectrocatalytic cathode performance in single-compartment glucose/oxygen biological fuel cells. <i>Electrochimica Acta</i> , 2014 , 140, 59-64	6.7	26
140	Tunable hierarchical macro/mesoporous gold microwires fabricated by dual-templating and dealloying processes. <i>Nanoscale</i> , 2013 , 5, 7849-54	7.7	33
139	Investigating the Impact of Multi-Heme Pyrroloquinoline Quinone-Aldehyde Dehydrogenase Orientation on Direct Bioelectrocatalysis via Site Specific Enzyme Immobilization. <i>ACS Catalysis</i> , 2013 , 3, 1756-1763	13.1	33
138	Nanomaterials for bio-functionalized electrodes: recent trends. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 4878-4908	7.3	260
137	Enzyme Cascade for Catalyzing Sucrose Oxidation in a Biofuel Cell. <i>ACS Catalysis</i> , 2013 , 3, 2729-2737	13.1	65
136	Anthracene-modified pyrenes immobilized on carbon nanotubes for direct electroreduction of O2 by laccase. <i>Electrochemistry Communications</i> , 2013 , 34, 157-160	5.1	85
135	Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 19371-9	3.6	85
134	Self-powered herbicide biosensor utilizing thylakoid membranes. <i>Analytical Methods</i> , 2013 , 5, 1140	3.2	35
133	Towards the Design of an Acetone Breath Biosensor. <i>ECS Transactions</i> , 2013 , 45, 1-17	1	2
132	Highly ordered multilayered 3D graphene decorated with metal nanoparticles. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1639-1645	13	72
131	Complete oxidation of methanol in biobattery devices using a hydrogel created from three modified dehydrogenases. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1437-40	16.4	72
130	Complete Oxidation of Methanol in Biobattery Devices Using a Hydrogel Created from Three Modified Dehydrogenases. <i>Angewandte Chemie</i> , 2013 , 125, 1477-1480	3.6	10
129	Effect of sulfonamides as carbonic anhydrase VA and VB inhibitors on mitochondrial metabolic energy conversion. <i>Bioorganic and Medicinal Chemistry</i> , 2013 , 21, 1544-8	3.4	84

128	Understanding the mechanism of direct electrochemistry of mitochondria-modified electrodes from yeast, potato and bovine sources at carbon paper electrodes. <i>Electrochimica Acta</i> , 2013 , 110, 112-	197	12
127	Greener Method to a Manganese Oxygen Reduction Reaction Electrocatalyst: Anion Electrolyte Effects on Electrocatalytic Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 359-363	8.3	3
126	Synthesis and characterization of ferracarboranethitosan and ferracarboranethultiwalled carbon nanotube redox mediator conjugates for bioanode applications. <i>Polyhedron</i> , 2013 , 50, 36-44	2.7	16
125	High performance thylakoid bio-solar cell using laccase enzymatic biocathodes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9062-5	3.6	31
124	Direct electron transfer-based bioanodes for ethanol biofuel cells using PQQ-dependent alcohol and aldehyde dehydrogenases. <i>Electrochimica Acta</i> , 2013 , 87, 323-329	6.7	41
123	Membraneless glucose/O2 microfluidic enzymatic biofuel cell using pyrolyzed photoresist film electrodes. <i>Lab on A Chip</i> , 2013 , 13, 2972-9	7.2	60
122	Ion exchange voltammetry at branched polyethylenimine cross-linked with ethylene glycol diglycidyl ether and sensitive determination of ascorbic acid. <i>Electrochimica Acta</i> , 2013 , 105, 31-39	6.7	13
121	Improved Performance of a Thylakoid Bio-Solar Cell by Incorporation of Carbon Quantum Dots. <i>ECS Electrochemistry Letters</i> , 2013 , 3, H1-H3		16
120	Fluorescence characterization of co-immobilization-induced multi-enzyme aggregation in a polymer matrix using Fister resonance energy transfer (FRET): toward the metabolon biomimic. <i>Biomacromolecules</i> , 2013 , 14, 2739-49	6.9	10
119	Nickel-DNA Complexes: Bioelectrocatalysis or Not?. <i>Journal of the Electrochemical Society</i> , 2013 , 160, H463-H468	3.9	1
118	Enzymatic Biofuel Cell with a Flow-through Toray Paper Bioanode for Improved Fuel Utilization. Journal of the Electrochemical Society, 2013 , 160, H612-H619	3.9	27
117	Employing Methylene Green Coated Carbon Nanotube Electrodes to Enhance NADH Electrocatalysis for Use in an Ethanol Biofuel Cell. <i>Electroanalysis</i> , 2013 , 25, 2394-2402	3	10
116	Effects of Carbon Nanotube Paper Properties on Enzymatic Bioanodes. <i>Electroanalysis</i> , 2013 , 25, 1130-7	1334	8
115	Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization. <i>Electrochimica Acta</i> , 2012 , 72, 207-214	6.7	36
114	New materials for biological fuel cells. <i>Materials Today</i> , 2012 , 15, 166-173	21.8	129
113	Characterization and Stability Study of Immobilized PQQ-Dependent Aldose Dehydrogenase Bioanodes. <i>Electroanalysis</i> , 2012 , 24, 229-238	3	8
112	Mitochondrial-based voltammetric sensor for pesticides. <i>Analytical Methods</i> , 2012 , 4, 1202	3.2	11
111	Enhanced alcohol electrocatalysis with the introduction of magnetic composites into nickel electrocatalysts. <i>Chemical Communications</i> , 2012 , 48, 11972-4	5.8	9

110	Utilizing DNA for Electrocatalysis: DNA-Nickel Aggregates as Anodic Electrocatalysts for Methanol, Ethanol, Glycerol, and Glucose. <i>ECS Electrochemistry Letters</i> , 2012 , 2, F9-F13		6
109	Bioelectrocatalytic Oxidation of Glucose in CNT Impregnated Hydrogels: Advantages of Synthetic Enzymatic Metabolon Formation. <i>ACS Catalysis</i> , 2012 , 2, 17-25	13.1	36
108	Highly ordered tailored three-dimensional hierarchical nano/microporous goldBarbon architectures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11950		29
107	Nanobioelectrocatalysis and Its Applications in Biosensors, Biofuel Cells and Bioprocessing. <i>Topics in Catalysis</i> , 2012 , 55, 1157-1161	2.3	22
106	Biofuel cells: enhanced enzymatic bioelectrocatalysis. <i>Annual Review of Analytical Chemistry</i> , 2012 , 5, 157-79	12.5	160
105	Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes. <i>Electrochimica Acta</i> , 2012 , 82, 214-217	6.7	3
104	Enzyme catalyzed electricity-driven water softening system. <i>Enzyme and Microbial Technology</i> , 2012 , 51, 396-401	3.8	18
103	Enzymatic biofuel cells utilizing a biomimetic cofactor. <i>Chemical Communications</i> , 2012 , 48, 1898-900	5.8	67
102	Nicotinamide Adenine Dinucleotide Oxidation Studies at Multiwalled Carbon Nanotube/Polymer Composite Modified Glassy Carbon Electrodes. <i>Electroanalysis</i> , 2012 , 24, 1011-1018	3	8
101	Enzymatic Biofuel Cell for Oxidation of Glucose to CO2. ACS Catalysis, 2012, 2, 91-94	13.1	87
100	High Performance Glucose/O2Biofuel Cell: Effect of Utilizing Purified Laccase with Anthracene-Modified Multi-Walled Carbon Nanotubes. <i>Journal of the Electrochemical Society</i> , 2012 , 159, G166-G170	3.9	28
99	Bio-Solar Cells Incorporating Catalase for Stabilization of Thylakoid Bioelectrodes during Direct Photoelectrocatalysis. <i>ECS Electrochemistry Letters</i> , 2012 , 1, G7-G9		25
98	Hydrophobic salt-modified Nafion for enzyme immobilization and stabilization. <i>Journal of Visualized Experiments</i> , 2012 , e3949	1.6	8
97	Hybrid Biofuel Cell: Microbial Fuel Cell with an Enzymatic Air-Breathing Cathode. <i>ACS Catalysis</i> , 2011 , 1, 994-997	13.1	73
96	Anthracene-Modified Multi-Walled Carbon Nanotubes as Direct Electron Transfer Scaffolds for Enzymatic Oxygen Reduction. <i>ACS Catalysis</i> , 2011 , 1, 1683-1690	13.1	155
95	Investigation of a deoxyribozyme as a biofuel cell catalyst. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15890-3	16.4	18
94	Mitochondrial biofuel cells: expanding fuel diversity to amino acids. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 86-92	3.6	45
93	Micellar enzymology for thermal, pH, and solvent stability. <i>Methods in Molecular Biology</i> , 2011 , 679, 19	-2 4 .4	

92	Micellar polymer encapsulation of enzymes. Methods in Molecular Biology, 2011, 679, 113-31	1.4	4
91	Introduction to the field of enzyme immobilization and stabilization. <i>Methods in Molecular Biology</i> , 2011 , 679, 1-7	1.4	9
90	Simulation of Multistep Enzyme-Catalyzed Methanol Oxidation in Biofuel Cells. <i>Journal of the Electrochemical Society</i> , 2011 , 158, B580	3.9	34
89	Utilization of enzyme cascades for complete oxidation of lactate in an enzymatic biofuel cell. <i>Electrochimica Acta</i> , 2011 , 56, 10772-10775	6.7	61
88	Metabolon Catalysts: An Efficient Model for Multi-enzyme Cascades at Electrode Surfaces. <i>ChemCatChem</i> , 2011 , 3, 561-570	5.2	24
87	Self-powered sensors. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 1605-11	4.4	41
86	Towards a rechargeable alcohol biobattery. <i>Journal of Power Sources</i> , 2011 , 196, 3448-3451	8.9	23
85	Standardized Characterization of a Flow Through Microbial Fuel Cell. <i>Electroanalysis</i> , 2011 , 23, 2174-21	83	6
84	Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation. <i>Enzyme and Microbial Technology</i> , 2011 , 48, 458-65	3.8	73
83	Electrically wired mitochondrial electrodes for measuring mitochondrial function for drug screening. <i>Analyst, The</i> , 2011 , 136, 3747-52	5	9
83		5.8	9
	screening. <i>Analyst, The</i> , 2011 , 136, 3747-52 Fluorescence characterization of immobilization induced enzyme aggregation. <i>Chemical</i>		
82	Fluorescence characterization of immobilization induced enzyme aggregation. <i>Chemical Communications</i> , 2011 , 47, 2083-5 Inhibition and activation of glucose oxidase bioanodes for use in a self-powered EDTA sensor.	5.8	6
82	Fluorescence characterization of immobilization induced enzyme aggregation. <i>Chemical Communications</i> , 2011 , 47, 2083-5 Inhibition and activation of glucose oxidase bioanodes for use in a self-powered EDTA sensor. <i>Analytical Chemistry</i> , 2011 , 83, 5436-41 Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: Towards the	5.8 7.8	53
82 81 80	Fluorescence characterization of immobilization induced enzyme aggregation. <i>Chemical Communications</i> , 2011 , 47, 2083-5 Inhibition and activation of glucose oxidase bioanodes for use in a self-powered EDTA sensor. <i>Analytical Chemistry</i> , 2011 , 83, 5436-41 Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery. <i>Electrochimica Acta</i> , 2011 , 56, 1585-1590 Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway. <i>Journal of</i>	5.8 7.8 6.7	6 53 33
82 81 80	Fluorescence characterization of immobilization induced enzyme aggregation. <i>Chemical Communications</i> , 2011 , 47, 2083-5 Inhibition and activation of glucose oxidase bioanodes for use in a self-powered EDTA sensor. <i>Analytical Chemistry</i> , 2011 , 83, 5436-41 Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery. <i>Electrochimica Acta</i> , 2011 , 56, 1585-1590 Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway. <i>Journal of Power Sources</i> , 2011 , 196, 7505-7509	5.8 7.8 6.7 8.9	533336
82 81 80 79 78	Fluorescence characterization of immobilization induced enzyme aggregation. Chemical Communications, 2011, 47, 2083-5 Inhibition and activation of glucose oxidase bioanodes for use in a self-powered EDTA sensor. Analytical Chemistry, 2011, 83, 5436-41 Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery. Electrochimica Acta, 2011, 56, 1585-1590 Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway. Journal of Power Sources, 2011, 196, 7505-7509 Bifunctional polyamines for the aqueous dispersion of carbon nanotubes and the formation of carbon nanotube-impregnated hydrogel composites. MRS Communications, 2011, 1, 37-40 Induced Evolution of PQQ-Dependent Alcohol Dehydrogenase Activity in Gluconobacter sp.33 for	5.8 7.8 6.7 8.9	6 53 33 36 18

74	Metabolon catalyzed pyruvate/air biofuel cell. Journal of the American Chemical Society, 2010, 132, 628	3±96.4	85
73	Growth of phthalocyanine doped and undoped nanotubes using mild synthesis conditions for development of novel oxygen reduction catalysts. <i>ACS Applied Materials & Description</i> , 2, 3295	;- 3 : 5 2	96
72	Fluorescence analysis of chemical microenvironments and their impact upon performance of immobilized enzyme. <i>Analyst, The</i> , 2010 , 135, 1131-7	5	13
71	High Current Density Air-Breathing Laccase Biocathode. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B557	3.9	45
70	Kinetic and transport analysis of immobilized oxidoreductases that oxidize glycerol and its oxidation products. <i>Electrochimica Acta</i> , 2010 , 55, 7679-7682	6.7	16
69	Development of a Chitosan Scaffold Electrode for Fuel Cell Applications. <i>Electroanalysis</i> , 2010 , 22, 793-	7 9 8	26
68	Structure and Electrochemical Properties of Electrocatalysts for NADH Oxidation. <i>Electroanalysis</i> , 2010 , 22, 799-806	3	41
67	Evaluating Enzyme Cascades for Methanol/Air Biofuel Cells Based on NAD+-Dependent Enzymes. <i>Electroanalysis</i> , 2010 , 22, 807-812	3	51
66	Oxidation of Biofuels: Fuel Diversity and Effectiveness of Fuel Oxidation through Multiple Enzyme Cascades. <i>Electroanalysis</i> , 2010 , 22, 757-764	3	68
65	Biofuel Cells for Portable Power. <i>Electroanalysis</i> , 2010 , 22, 727-731	3	92
64	Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications. <i>Electrochimica Acta</i> , 2010 , 55, 6659-6664	6.7	15
63	Evaluation of the electron transport chain inhibition and uncoupling of mitochondrial bioelectrocatalysis with antibiotics and nitro-based compounds. <i>Electrochimica Acta</i> , 2010 , 56, 938-944	6.7	10
62	Pyruvate/Air Enzymatic Biofuel Cell Capable of Complete Oxidation. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, F26		77
61	Biocompatible Micellar Environment for Enzyme Encapsulation for Bioelectrocatalysis Applications. <i>ECS Transactions</i> , 2009 , 19, 1-7	1	3
60	Bioelectrocatalysis of ethanol via PQQ-dependent dehydrogenases utilizing carbon nanomaterial supports. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2374-80	1.3	30
59	Bioelectrocatalysis of Pyruvate with PQQ-dependent Pyruvate Dehydrogenase. <i>ECS Transactions</i> , 2009 , 25, 1-11	1	9
58	Complete Oxidation of Glycerol in an Enzymatic Biofuel Cell. Fuel Cells, 2009, 9, 63-69	2.9	131
57	Mitochondrial bioelectrocatalysis for biofuel cell applications. <i>Electrochimica Acta</i> , 2009 , 54, 7268-7273	6.7	36

(2008-2009)

56	Recent advances in material science for developing enzyme electrodes. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2313-22	11.8	223
55	Characterization and evaluation of hydrophobically modified chitosan scaffolds: Towards design of enzyme immobilized flow-through electrodes. <i>Carbohydrate Polymers</i> , 2009 , 75, 428-435	10.3	28
54	Effects of degree of deacetylation on enzyme immobilization in hydrophobically modified chitosan. <i>Carbohydrate Polymers</i> , 2009 , 77, 420-424	10.3	35
53	Fluorescence characterization of chemical microenvironments in hydrophobically modified chitosan. <i>Carbohydrate Polymers</i> , 2009 , 77, 695-702	10.3	24
52	Spatial distribution of malate dehydrogenase in chitosan scaffolds. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2009 , 1, 367-72	9.5	12
51	Enzymatic Biofuel Cells 2009 , 179-241		4
50	Analytical techniques for characterizing enzymatic biofuel cells. <i>Analytical Chemistry</i> , 2009 , 81, 9538-45	7.8	27
49	Comparison of electropolymerized thiazine dyes as an electrocatalyst in enzymatic biofuel cells and self powered sensors. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 1714-21	1.3	28
48	Extended lifetime biofuel cells. <i>Chemical Society Reviews</i> , 2008 , 37, 1188-96	58.5	300
47	Enzyme catalysed biofuel cells. <i>Energy and Environmental Science</i> , 2008 , 1, 320	35.4	323
46	Soybean Oil Biofuel Cell: Utilizing Lipoxygenase Immobilized by Modified Nafion to Catalyze the Oxidation of Fatty Acids for Biofuel Cells. <i>ACS Symposium Series</i> , 2008 , 334-353	0.4	4
45	Nitroaromatic actuation of mitochondrial bioelectrocatalysis for self-powered explosive sensors. Journal of the American Chemical Society, 2008 , 130, 15272-3	16.4	58
44	Design of chitosan gel pore structure: towards enzyme catalyzed flow-through electrodes. <i>Journal of Materials Chemistry</i> , 2008 , 18, 667		64
43	Unique properties of a perfluoroalkyl-modified 2,2?-bipyridyl ruthenium complex in a Nafion membrane: attenuated leaching of a potential biofuel cell redox mediator. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2104		11
42	Simulation of Multi-Step Enzyme Electrodes. ECS Transactions, 2008, 13, 99-109	1	3
41	Enzyme Immobilization in Biotechnology. <i>Recent Patents on Engineering</i> , 2008 , 2, 195-200	0.3	116
40	Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes. <i>Electrochimica Acta</i> , 2008 , 53, 6698-6703	6.7	71
39	Standardized Characterization of Electrocatalytic Electrodes. <i>Electroanalysis</i> , 2008 , 20, 1099-1109	3	46

38	Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes. <i>Bioelectrochemistry</i> , 2008 , 74, 73-7	5.6	52
37	Citric acid cycle biomimic on a carbon electrode. <i>Biosensors and Bioelectronics</i> , 2008 , 24, 945-50	11.8	120
36	Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion□ polymers. <i>Journal of Membrane Science</i> , 2008 , 311, 81-88	9.6	89
35	Microchip Devices for Bioanalysis. Springer Protocols, 2008, 851-859	0.3	2
34	Bilirubin Oxidase Biocathodes for Ethanol Biofuel Cells. ECS Transactions, 2007, 5, 117-127	1	4
33	Chemistry for a sustainable future. Environmental Science & Technology, 2007, 41, 4840-6	10.3	27
32	Enzyme-based biofuel cells. Current Opinion in Biotechnology, 2007, 18, 228-34	11.4	420
31	Development of glycerol/O2 biofuel cell. <i>Journal of Power Sources</i> , 2007 , 173, 156-161	8.9	142
30	Electrode Potentials 2007 , 813-827		14
29	Malonyl coenzyme A affects insulin-stimulated glucose transport in myotubes. <i>Archives of Physiology and Biochemistry</i> , 2007 , 113, 13-24	2.2	5
28	An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. <i>Environmental Science & Environmental Science & Envi</i>	10.3	385
27	Poly(methylene green) employed as molecularly imprinted polymer matrix for electrochemical sensing. <i>Analyst, The</i> , 2006 , 131, 257-61	5	66
26	Dual fluorescence from an isonido ReIII rhenacarborane phosphine complex, [7,10-mu-H-7-CO-7,7-(PPh3)2-isonido-7,8,9-ReC2B7H9]. <i>Inorganic Chemistry</i> , 2006 , 45, 7339-47	5.1	17
25	Development of a membraneless ethanol/oxygen biofuel cell. <i>Electrochimica Acta</i> , 2006 , 51, 2168-2172	6.7	138
24	Electrocatalytic reductive dimerization of the 2,2?-bipyridyl tungsten alkylidyne complex [W(CC6H4NMe2-4)(NCMe)(CO)2{1-2,2?-(NC5H4)2}]+. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 4660-4666	2.3	9
23	Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. <i>Journal of Membrane Science</i> , 2006 , 282, 276-283	9.6	123
22	Microfluidic ethanol biobatteries on a microchip. Methods in Molecular Biology, 2006, 321, 157-66	1.4	1

20	Microchip-based ethanol/oxygen biofuel cell. Lab on A Chip, 2005, 5, 218-25	7.2	138
19	Electricity generation from artificial wastewater using an upflow microbial fuel cell. <i>Environmental Science & Environmental </i>	10.3	599
18	Possibility of autocrine beta-adrenergic signaling in C2C12 myotubes. <i>Experimental Biology and Medicine</i> , 2005 , 230, 845-52	3.7	10
17	Effect of mixture casting phosphonium salts with Nafion on the proton exchange capacity and mass transport through the membranes. <i>Journal of Membrane Science</i> , 2005 , 254, 63-70	9.6	13
16	Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. <i>Electrochimica Acta</i> , 2005 , 50, 2521-2525	6.7	225
15	Effects of surfactants on the transport properties of redox species through Nafion membranes. <i>Journal of Membrane Science</i> , 2005 , 255, 233-238	9.6	19
14	Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammonium bromides. <i>Biomacromolecules</i> , 2004 , 5, 1241-7	6.9	174
13	Flow-based amperometric detection of dopamine in an immobilized cell reactor. <i>Journal of Neuroscience Methods</i> , 2003 , 124, 129-34	3	11
12	Effects of annealing on mixture-cast membranes of Nafion and quaternary ammonium bromide salts. <i>Journal of Membrane Science</i> , 2003 , 213, 55-66	9.6	54
11	Effects of mixture casting Nafion with quaternary ammonium bromide salts on the ion-exchange capacity and mass transport in the membranes. <i>Journal of Membrane Science</i> , 2002 , 205, 3-10	9.6	43
10	Density of nafion exchanged with transition metal complexes and tetramethyl ammonium, ferrous, and hydrogen ions: commercial and recast films. <i>Analytical Chemistry</i> , 2002 , 74, 4794-9	7.8	39
9	Electrochemical Effects of Surface-Modified Glass Microspheres in Polyvinylpyridine and Polystyrene Sulfonate Composite Electrodes. <i>Langmuir</i> , 2002 , 18, 6254-6258	4	8
8	3,4-Dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson's disease pathogenesis. <i>Molecular Brain Research</i> , 2001 , 93, 1-7		83
7	Electrochemical Studies of Surface-Modified Glass Bead/Nafion Composites. <i>Langmuir</i> , 2001 , 17, 6304-	6 <u>3</u> 08	4
6	Unveiling the Pitfalls of Comparing Oxygen Reduction Reaction Kinetic Data for Pd-Based Electrocatalysts without the Experimental Conditions of the Current P otential Curves. <i>ACS Energy Letters</i> ,952-957	20.1	2
5	Alcoholic Fuels		13
4	Engineering Cyanobacterium with Transmembrane Electron Transfer Ability for Bioelectrochemical Nitrogen Fixation. <i>ACS Catalysis</i> ,13169-13179	13.1	5
3	Experimental Protocols for Studying Organic Non-aqueous Redox Flow Batteries. <i>ACS Energy Letters</i> ,3932-3943	20.1	2

Carbon Nanotube PtSn Nanoparticles for Enhanced Complete Biocatalytic Oxidation of Ethylene Glycol in Biofuel Cells. *ACS Materials Au*,

1

Applying synthetic biology strategies to bioelectrochemical systems. *Electrochemical Science Advances*,

1