
Paolo Colantonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5166252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 5-W GaN Doherty Amplifier for <i>Ka</i> -Band Satellite Downlink With 4-GHz Bandwidth and 17-dB NPR. IEEE Microwave and Wireless Components Letters, 2022, 32, 964-967.	3.2	18
2	A K-Band GaN MMIC Series-Connected Load Doherty Power Amplifier. , 2022, , .		0
3	Automatic Optimization of Input Split and Bias Voltage in Digitally Controlled Dual-Input Doherty RF PAs. Energies, 2022, 15, 4892.	3.1	9
4	A high efficiency 10W MMIC PA for K-b and satellite communications. International Journal of Microwave and Wireless Technologies, 2021, 13, 582-594.	1.9	4
5	Evaluation of a <scp>stackedâ€FET</scp> cell for highâ€frequency applications (invited paper). International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34, e2881.	1.9	8
6	A 17.3–20.2-GHz GaN-Si MMIC Balanced HPA for Very High Throughput Satellites. IEEE Microwave and Wireless Components Letters, 2021, 31, 296-299.	3.2	36
7	Microwave and Radar Week (MRW 2020): Selected Papers. Remote Sensing, 2021, 13, 1803.	4.0	0
8	A Novel Stacked Cell Layout for High-Frequency Power Applications. IEEE Microwave and Wireless Components Letters, 2021, 31, 597-599.	3.2	10
9	Space-Compliant Design of a Millimeter-Wave GaN-on-Si Stacked Power Amplifier Cell through Electro-Magnetic and Thermal Simulations. Electronics (Switzerland), 2021, 10, 1784.	3.1	5
10	S Band Hybrid Power Amplifier in GaN Technology with Input/Output Multi Harmonic Tuned Terminations. Electronics (Switzerland), 2021, 10, 2318.	3.1	8
11	A Comprehensive Harmonic Analysis of Current-Mode Power Amplifiers. Energies, 2021, 14, 7042.	3.1	0
12	D-Band Balanced PA with Wideband Performance in BiCMOS Technology. , 2020, , .		1
13	90 GHz Bandwidth Single-Ended PA for D-Band Applications in BiCMOS Technology. , 2020, , .		1
14	220–360-GHz Broadband Frequency Multiplier Chains (x8) in 130-nm BiCMOS Technology. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2701-2715.	4.6	35
15	168-195 GHz Power Amplifier With Output Power Larger Than 18 dBm in BiCMOS Technology. IEEE Access, 2020, 8, 79299-79309.	4.2	19
16	A Ka-band 33 dBm Stacked Power Amplifier Cell in 100 nm GaN-on-Si Technology. , 2020, , .		3
17	S-Band Class-C-F Power Amplifier with 2nd Harmonic Control at the Input. Applied Sciences (Switzerland), 2020, 10, 259.	2.5	1
18	High-Efficiency Microwave Power Amplifier with Higher Harmonics Level Control on Basis of Defected Ground Structure Resonators. , 2020, , .		0

#	Article	IF	CITATIONS
19	Wideband Frequency Quadrupler for D-Band Applications in BiCMOS Technology. , 2020, , .		1
20	A Single GaN HEMT L-band 40 W Power Module for Navigation Applications. , 2020, , .		3
21	Ka-Band GaN-on-Si 4W MMIC High Power Amplifier for Millimetre-wave Radar. , 2019, , .		1
22	A Ka-band Doherty Power Amplifier using an innovative Stacked-FET Cell. , 2019, , .		10
23	High Performance Asymmetric Coupled Line Balun at Sub-THz Frequency. Applied Sciences (Switzerland), 2019, 9, 1907.	2.5	16
24	Full-Band Oversized Turnstile-Based Waveguide Four-Way Power Divider/Combiner for High-Power Applications. Electronics (Switzerland), 2019, 8, 193.	3.1	5
25	Two-stage Class F-C Power Amplifier with an Optimum 2nd Harmonic Control at the Power Stage Input. , 2019, , .		0
26	Class F-C Power Amplifier with 2nd Harmonic Control at the Input. , 2019, , .		0
27	Sub-THz On-Chip Dielectric Resonator Antenna with Wideband performance. , 2019, , .		8
28	A 18-dBm G-Band Power Amplifier using 130-nm SiGe BiCMOS Technology. , 2019, , .		7
29	Sub-THz On-Chip Dielectric Resonator Antenna with Wideband performance. , 2019, , .		3
30	Thermal-aware GaN/Si MMIC design for space applications. , 2019, , .		20
31	Optical characterization of high and low resistive silicon samples suitable for reconfigurable antenna design. Microwave and Optical Technology Letters, 2019, 61, 107-110.	1.4	3
32	Optically reconfigurable planar monopole antenna for cognitive radio application. Microwave and Optical Technology Letters, 2019, 61, 1110-1115.	1.4	7
33	A Design Approach to Maximize the Efficiency <italic>vs.</italic> Linearity Trade-Off in Fixed and Modulated Load GaN Power Amplifiers. IEEE Access, 2018, 6, 9247-9255.	4.2	33
34	Parasitic effects of the metallic towers on the characteristics of the broadcast antennas. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 28, e21203.	1.2	0
35	Design Realization and Tests of a Space-Borne GaN Solid State Power Amplifier for Second Generation Galileo Navigation System. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54, 2383-2396.	4.7	12

36 Study of 130 nm SiGe HBT Periphery in the Design of 160 GHz Power Amplifier. , 2018, , .

#	Article	IF	CITATIONS
37	High-Efficiency Microwave Power Amplifier on Basis of Defected Ground Structure Resonators. , 2018, , .		1
38	Solid state power amplifiers for satellite communication: A feasible solution. , 2018, , .		1
39	A single module compact efficient harmonic tuned 160 W power amplifier for GPS application. , 2018, , .		8
40	Common emitter and cascode topologies at G band: A comparative study on a single stage 183 GHz power amplifier. , 2018, , .		4
41	Empowering GaN HEMT models: The gateway for power amplifier design. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, e2125.	1.9	40
42	Class F-C X-band MMIC GaN power amplifier: An extension of waveform engineering approach. , 2017, , .		0
43	A High Efficiency and Low Distortion 6 W GaN MMIC Doherty Amplifier for 7 GHz Radio Links. IEEE Microwave and Wireless Components Letters, 2017, 27, 70-72.	3.2	32
44	A Design Strategy for AM/PM Compensation in GaN Doherty Power Amplifiers. IEEE Access, 2017, 5, 22244-22251.	4.2	34
45	ENHANCING POWER EFFICIENCY OF DOHERTY POWER AMPLIFIERS USING WINDOWING BASED CREST FACTOR REDUCTION TECHNIQUE. Progress in Electromagnetics Research C, 2016, 63, 63-74.	0.9	1
46	Characterization of a high power GaN device for class E PA design with non-sinusoidal stimulus. , 2016, , .		1
47	A design approach to mitigate the phase distortion in GaN MMIC Doherty Power Amplifiers. , 2016, , .		1
48	Fast extraction of accurate I/V models for harmonically-tuned power amplifier design. , 2016, , .		0
49	Development of solid state power amplifier on GaN technology for Galileo satellite systems. , 2016, , .		1
50	Development of a PWM based transmitter for P-band SAR applications. , 2016, , .		2
51	A comprehensive comparison between GaN MMIC Doherty and combined class-AB power amplifiers for microwave radio links. International Journal of Microwave and Wireless Technologies, 2016, 8, 673-681.	1.9	10
52	A 300W complete GaN solid state power amplifier for positioning system satellite payloads. , 2016, , .		12
53	High efficiency and low distortion GaN MMIC power amplifier for 7 Ghz applications. , 2016, , .		2
54	A high-power solid state amplifier for Galileo satellite system exploiting European GaN technology. International Journal of Microwave and Wireless Technologies, 2016, 8, 691-702.	1.9	8

#	Article	IF	CITATIONS
55	A Design Approach for Two Stages GaN MMIC PAs With High Efficiency and Excellent Linearity. IEEE Microwave and Wireless Components Letters, 2016, 26, 46-48.	3.2	13
56	EuMW special issue. International Journal of Microwave and Wireless Technologies, 2015, 7, 209-210.	1.9	0
57	Design and test of a pulse-width modulator and driver for space-borne GaN switch mode power amplifiers in P-band. International Journal of Microwave and Wireless Technologies, 2015, 7, 297-305.	1.9	1
58	A GaN high power and efficient amplifier for L-Band Galileo system. , 2015, , .		7
59	C-band power amplifier design based on low-frequency waveform engineering. , 2015, , .		Ο
60	The Doherty Amplifier: Past, present & amp; amp; future. , 2015, , .		6
61	Sequential asymmetric superposition windowing for Crest Factor Reduction and its effects on Doherty power amplifier. , 2015, , .		2
62	Designing a tri-band concurrent Doherty power amplifier. , 2015, , .		0
63	Theoretical consideration on harmonic manipulated amplifiers based on experimental data. , 2015, , .		5
64	C-band power amplifier design based on low-frequency waveform engineering. , 2015, , .		1
65	A METHOD FOR DESIGNING BROADBAND DOHERTY POWER AMPLIFIERS. Progress in Electromagnetics Research, 2014, 145, 319-331.	4.4	12
66	An enhanced Phase Shifted Transmitter based on 2 nd HT GaN-PAs with energy recovery circuit. , 2014, , .		0
67	A 250 nm CMOS / LDMOS Pulse-Width Modulator and Driver for space-borne GaN switch mode power amplifiers in P-Band. , 2014, , .		1
68	A 250 nm CMOS / LDMOS Pulse-Width Modulator and Driver for space-borne GaN switch mode power amplifiers in P-band. , 2014, , .		1
69	A Closed-Form Design Technique for Ultra-Wideband Doherty Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 3414-3424.	4.6	97
70	Genetic-based Design of Harmonic-tuned Dual-band GaN HEMT Power Amplifier. Procedia Technology, 2014, 18, 2-5.	1.1	0
71	Tunable antenna system for plug&play satellite avionics: Prototyping and test. , 2014, , .		Ο
72	15% bandwidth 7 GHz GaNâ€MMIC Doherty amplifier with enhanced auxiliary chain. Microwave and Optical Technology Letters, 2014, 56, 502-504.	1.4	24

#	Article	IF	CITATIONS
73	Gate waveform effects on high-efficiency PA design: An experimental validation. , 2014, , .		1
74	Gate waveform effects on high-efficiency PA design: An experimental validation. , 2014, , .		5
75	A tuning method for the post-processing optimization of the Doherty power amplifier frequency band. , 2014, , .		2
76	An Ultra-Broadband GaN Doherty Amplifier with 83% of Fractional Bandwidth. IEEE Microwave and Wireless Components Letters, 2014, 24, 775-777.	3.2	40
77	Design method for quasi-optimal multiband branch-line couplers. International Journal of RF and Microwave Computer-Aided Engineering, 2014, 24, 117-129.	1.2	4
78	Asymmetrical Doherty power architecture with an integrated driver stage in the auxiliary branch. International Journal of RF and Microwave Computer-Aided Engineering, 2014, 24, 498-507.	1.2	9
79	Design of harmonic-tuned dual-band GaN HEMT power amplifier based on genetic algorithm. , 2014, , .		1
80	System level characterization and digital predistortion of GaN MMIC Doherty power amplifiers for microwave point-to-point radios. , 2014, , .		2
81	1–6 GHz ultrawideband 4 W singleâ€ended GaN power amplifier. Microwave and Optical Technology Letters, 2014, 56, 215-217.	1.4	6
82	Load network design technique for microwave class-F amplifier. , 2014, , .		1
83	Effect of Load Modulation on Phase Distortion in Doherty Power Amplifiers. IEEE Microwave and Wireless Components Letters, 2014, 24, 505-507.	3.2	43
84	Improved phase linearity in source field plate AlGaN/GaN HEMTs. , 2014, , .		1
85	An enhanced phase shifted transmitter based on 2 nd HT GaN-PAs with energy recovery circuit. , 2014, , .		0
86	Selex ES GaN Technology improvements, results and R&D approach for Defense and Space application. , 2014, , .		1
87	A comparative study on digital predistortion techniques for Doherty amplifier for LTE applications. , 2014, , .		4
88	A distributed matching/combining network suitable for Doherty power amplifiers covering more than an octave frequency band. , 2014, , .		19
89	Modular, customisable, accomodation-friendly antenna system for satellite avionics: Development, prototyping and validation. , 2014, , .		0
90	Evaluation of FET performance and restrictions by low-frequency measurements. , 2014, , .		6

#	Article	IF	CITATIONS
91	Investigation of the AM/pm distortion in Doherty Power Amplifiers. , 2014, , .		21
92	Evaluating GaN Doherty architectures for 4G Picocells, WiMax and microwave backhaul links. , 2014, , .		1
93	An efficient, linear and compact GaN-MMIC power module for microwave backhaul links. , 2014, , .		1
94	Experimental investigation of bias current and load modulation effects in phase distortion of GaN HEMTs. Electronics Letters, 2014, 50, 773-775.	1.0	12
95	Improved phase linearity in Source Field Plate AlGaN/GaN HEMTs. , 2014, , .		1
96	A Doherty Architecture With High Feasibility and Defined Bandwidth Behavior. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3308-3317.	4.6	57
97	Advanced GaN-based high frequency power amplifiers. , 2013, , .		2
98	Xâ€band MMIC GaN power amplifier for SAR systems. Microwave and Optical Technology Letters, 2013, 55, 2611-2616.	1.4	11
99	High-Efficiency 7 GHz Doherty GaN MMIC Power Amplifiers for Microwave Backhaul Radio Links. IEEE Transactions on Electron Devices, 2013, 60, 3592-3595.	3.0	31
100	A Wideband Doherty Architecture With 36% of Fractional Bandwidth. IEEE Microwave and Wireless Components Letters, 2013, 23, 626-628.	3.2	57
101	A Doherty amplifier with maximally flat efficiency in the bandwidth. , 2013, , .		0
102	GaN MMIC Doherty power amplifier solutions for backhaul microwave links. , 2013, , .		1
103	New Output Combiner for Doherty Amplifiers. IEEE Microwave and Wireless Components Letters, 2013, 23, 31-33.	3.2	43
104	Focusing on Doherty Power Amplifiers for S-Band. , 2012, , .		0
105	Design of a Concurrent Dual-Band 1.8–2.4-GHz GaN-HEMT Doherty Power Amplifier. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1840-1849.	4.6	126
106	X-Band GaAs mmic high power amplifier for transmitter space module. Microwave and Optical Technology Letters, 2012, 54, 2633-2635.	1.4	4
107	Branch-Line Coupler Design Operating in Four Arbitrary Frequencies. IEEE Microwave and Wireless Components Letters, 2012, 22, 67-69.	3.2	29

108 Ultra wide band power amplifier using GaN on Si HEMT device. , 2012, , .

#	Article	IF	CITATIONS
109	Concurrent dual-band GaN-HEMT power amplifier at 1.8 GHz and 2.4 GHz. , 2012, , .		21
110	GaN broadband Power Amplifiers for terrestrial and space transmitters. , 2012, , .		4
111	Multi-band/multi-mode and efficient transmitter based on a Doherty Power Amplifier. , 2012, , .		8
112	The Doherty amplifier and its evolution for modern communication systems. , 2011, , .		0
113	The weight of the on resistance in Doherty PAs. , 2011, , .		2
114	A CONTRIBUTION TO LINEARITY IMPROVEMENT OF A HIGHLY EFFICIENT PA FOR WIMAX APPLICATIONS. Progress in Electromagnetics Research, 2011, 119, 59-84.	4.4	13
115	Increasing Doherty Amplifier Average Efficiency Exploiting Device Knee Voltage Behavior. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2295-2305.	4.6	44
116	Experimental results of an Xâ€band MMIC Doherty power amplifier. Microwave and Optical Technology Letters, 2011, 53, 2665-2668.	1.4	2
117	1 KW compact L-band pulsed power amplifier for Radar applications. , 2011, , .		4
118	A highly efficient PA design for WiMAX applications: Theory and experiment. International Journal of RF and Microwave Computer-Aided Engineering, 2010, 20, 642-651.	1.2	0
119	Class F against tuned load configuration in Doherty power amplifiers. Microwave and Optical Technology Letters, 2010, 52, 450-452.	1.4	0
120	Evaluation of GaN technology in Doherty power amplifier architectures. International Journal of Microwave and Wireless Technologies, 2010, 2, 75-84.	1.9	5
121	Class Fâ^'1PA: Theoretical aspects. , 2010, , .		8
122	Designing a Doherty power amplifier. , 2010, , .		2
123	An X-Band GaAs MMIC Doherty Power Amplifier. , 2010, , .		8
124	Effects of Envelope Tracking technique on an L-band power amplifier. , 2010, , .		2
125	Nonideality sources and implementation considerations in polar transmitters. International Journal of Microwave and Wireless Technologies, 2009, 1, 109-116.	1.9	5
126	Concurrent dual-band SiGe HBT power amplifier for Wireless applications. International Journal of Microwave and Wireless Technologies, 2009, 1, 117-126.	1.9	2

#	Article	IF	CITATIONS
127	Theory and experimental validation of a Class E PA above theoretical maximum frequency. International Journal of Microwave and Wireless Technologies, 2009, 1, 293-299.	1.9	4
128	Theory and Experimental Results of a Class F AB-C Doherty Power Amplifier. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 1936-1947.	4.6	59
129	The AB-C Doherty power amplifier. Part I: Theory. International Journal of RF and Microwave Computer-Aided Engineering, 2009, 19, 293-306.	1.2	72
130	The AB-C Doherty power amplifier. Part II: Validation. International Journal of RF and Microwave Computer-Aided Engineering, 2009, 19, 307-316.	1.2	8
131	Evaluation of GaN technology in power amplifier design. Microwave and Optical Technology Letters, 2009, 51, 42-44.	1.4	14
132	Compact harmonic control network for Doherty power amplifier. Microwave and Optical Technology Letters, 2009, 51, 256-258.	1.4	2
133	Design approach to improve linearity and power performance of microwave FETs. International Journal of RF and Microwave Computer-Aided Engineering, 2008, 18, 527-535.	1.2	5
134	From device characterization to system level analysis of dual band PA design in SiGe technology. International Journal of RF and Microwave Computer-Aided Engineering, 2008, 18, 552-563.	1.2	2
135	Dual band power amplifier in GaN technology. Microwave and Optical Technology Letters, 2008, 50, 1040-1042.	1.4	7
136	Multi-octave high efficiency power amplifier in GaAs technology. , 2008, , .		2
137	Base-band predistortion linearization scheme of high efficiency power amplifiers for wireless applications. , 2008, , .		5
138	Optimization of Class E Power Amplifier Design above Theoretical Maximum Frequency. , 2008, , .		8
139	Optimization of Class E Power Amplifier Design above Theoretical Maximum Frequency. , 2008, , .		6
140	A Design Technique for Concurrent Dual-Band Harmonic Tuned Power Amplifier. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 2545-2555.	4.6	120
141	Bias relationships for Envelope Tracking technique. , 2008, , .		3
142	GaN Doherty Amplifier With Compact Harmonic Traps. , 2008, , .		2
143	High-efficiency ultra-wideband power amplifier in GaN technology. Electronics Letters, 2008, 44, 130.	1.0	32

GaN Doherty Amplifier With Compact Harmonic Traps. , 2008, , .

#	Article	IF	CITATIONS
145	Simultaneous dual-band high efficiency harmonic tuned power amplifier in GaN technology. , 2007, , .		17
146	Linearity and efficiency optimisation in microwave power amplifier design. , 2007, , .		2
147	RF signal component separator for LINC transmitters. Electronics Letters, 2007, 43, 932.	1.0	2
148	RF experimental implementation of LINC technique. , 2007, , .		1
149	Linearity and efficiency optimisation in microwave power amplifier design. , 2007, , .		Ο
150	Linearity and Efficiency Optimisation in Microwave Power Amplifier Design. , 2007, , .		1
151	A new design strategy for multi frequencies passive matching networks. , 2007, , .		28
152	A 6W uneven doherty power amplifier in GaN technology. , 2007, , .		20
153	Neural networks and volterra series for time-domain power amplifier behavioral models. International Journal of RF and Microwave Computer-Aided Engineering, 2007, 17, 160-168.	1.2	14
154	Combined class F monolithic PA design. Microwave and Optical Technology Letters, 2007, 49, 360-362.	1.4	3
155	Advanced Neural Network Techniques for GaN-HEMT Dynamic Behavior Characterization. , 2006, , .		5
156	Power Amplifier Design Strategy to null IMD asymmetry. , 2006, , .		8
157	New Design Approach to minimise IMD Asymmetry and IM <inf>3</inf> products in Microwave FETs. , 2006, , .		1
158	A Two Stage High Frequency Class F Power Amplifier. , 2006, , .		2
159	RF Dynamic Behavioral Model Suitable for GaN-HEMT Devices. , 2006, , .		2
160	A C-band high-efficiency second-harmonic-tuned hybrid power amplifier in GaN technology. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 2713-2722.	4.6	67
161	A Method to Design Distributed Harmonic Matching Networks. , 2006, , .		8
162	Prediction of PA Optimum Load by Small Signal Parameters. , 2006, , .		6

Prediction of PA Optimum Load by Small Signal Parameters. , 2006, , . 162

#	Article	IF	CITATIONS
163	Class F design criteria validation through non linear load pull simulation. , 2006, , .		0
164	Closed-Form Method to Design Harmonic Matching Networks. , 2006, , .		2
165	Neural network modeling of microwave FETs based on third-order distortion characterization. International Journal of RF and Microwave Computer-Aided Engineering, 2006, 16, 192-200.	1.2	3
166	A RF approach for the implementation of the LINC technique. , 2006, , .		4
167	Present and future trends in power amplifiers design solutions. , 2006, , .		0
168	Matching network design criteria for wideband high-frequency amplifiers. International Journal of RF and Microwave Computer-Aided Engineering, 2005, 15, 423-433.	1.2	8
169	High efficiency and high linearity power amplifier design. International Journal of RF and Microwave Computer-Aided Engineering, 2005, 15, 453-468.	1.2	10
170	A C-band high efficiency second harmonic tuned hybrid power amplifier in GaN technology. , 2005, , .		3
171	Nonlinear approaches to the design of microwave power amplifiers. International Journal of RF and Microwave Computer-Aided Engineering, 2004, 14, 493-506.	1.2	15
172	An Approach to Harmonic Load– and Source–Pull Measurements for High-Efficiency PA Design. IEEE Transactions on Microwave Theory and Techniques, 2004, 52, 191-198.	4.6	86
173	<title>Theoretical aspects and practical design criteria for high-efficiency PAs</title> . , 2004, , .		0
174	Modeling power and intermodulation behavior of microwave transistors with unified small-signal/large-signal neural network models. International Journal of RF and Microwave Computer-Aided Engineering, 2003, 13, 276-284.	1.2	5
175	Theoretical facet and experimental results of harmonic tuned PAs. International Journal of RF and Microwave Computer-Aided Engineering, 2003, 13, 459-472.	1.2	41
176	Power Balance in High Efficiency PAs. , 2002, , .		0
177	Harmonic-balance simulation of nonlinear scattering functions for computer-aided design of nonlinear microwave circuits. International Journal of RF and Microwave Computer-Aided Engineering, 2002, 12, 460-468.	1.2	2
178	CAD of evanescent-mode bandpass filters based on the short ridged waveguide sections. International Journal of RF and Microwave Computer-Aided Engineering, 2001, 11, 354-365.	1.2	5
179	Multiharmonic manipulation for highly efficient microwave power amplifiers. International Journal of RF and Microwave Computer-Aided Engineering, 2001, 11, 366-384.	1.2	70
180	High efficiency low-voltage power amplifier design by second-harmonic manipulation. International Journal of RF and Microwave Computer-Aided Engineering, 2000, 10, 19-32.	1.2	55

#	Article	IF	CITATIONS
181	Class G approach for low-voltage, high-efficiency PA design. International Journal of RF and Microwave Computer-Aided Engineering, 2000, 10, 366-378.	1.2	24
182	Experimental performances of 5 GHz harmonic-manipulated high efficiency microwave power amplifiers. Electronics Letters, 2000, 36, 800.	1.0	13
183	Non-linear design of active frequency doublers. International Journal of RF and Microwave Computer-Aided Engineering, 1999, 9, 117-128.	1.2	7
184	On the class-F power amplifier design. International Journal of RF and Microwave Computer-Aided Engineering, 1999, 9, 129-149.	1.2	100
185	Direct-synthesis design technique for nonlinear microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 1995, 43, 2851-2855.	4.6	14
186	The Doherty Power Amplifier. , 0, , .		8
187	Microwave Power Amplifiers. , 0, , .		4
188	Load-Pull Techniques. , 0, , .		2