Andrew D Rhim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5166195/publications.pdf

Version: 2024-02-01

48 papers

7,192 citations

172457 29 h-index 206112 48 g-index

49 all docs 49 docs citations

49 times ranked

12218 citing authors

#	Article	lF	CITATIONS
1	EMT and Dissemination Precede Pancreatic Tumor Formation. Cell, 2012, 148, 349-361.	28.9	1,746
2	Stromal Elements Act to Restrain, Rather Than Support, Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2014, 25, 735-747.	16.8	1,616
3	Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor Regulates Myeloid Inflammation and T Cell Immunity in Pancreatic Cancer. Cancer Cell, 2012, 21, 822-835.	16.8	809
4	Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.	9.4	282
5	Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut, 2017, 66, 124-136.	12.1	269
6	Early Detection of Sporadic Pancreatic Cancer. Pancreas, 2015, 44, 693-712.	1.1	255
7	Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3078-3083.	7.1	245
8	Interleukin-6 Is Required for Pancreatic Cancer Progression by Promoting MAPK Signaling Activation and Oxidative Stress Resistance. Cancer Research, 2013, 73, 6359-6374.	0.9	208
9	Neuroplastic Changes Occur Early in the Development of Pancreatic Ductal Adenocarcinoma. Cancer Research, 2014, 74, 1718-1727.	0.9	140
10	A Clinical Prediction Model to Assess Risk for Pancreatic Cancer Among Patients With New-Onset Diabetes. Gastroenterology, 2017, 152, 840-850.e3.	1.3	133
11	Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. Lab on A Chip, 2014, 14, 1775-1784.	6.0	107
12	The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes and Development, 2013, 27, 288-300.	5.9	101
13	Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science, 2021, 373, eabj0486.	12.6	99
14	Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer. Developmental Cell, 2018, 45, 696-711.e8.	7.0	96
15	MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 2017, 8, 1728.	12.8	83
16	Can Stopping Nerves, Stop Cancer?. Trends in Neurosciences, 2016, 39, 880-889.	8.6	80
17	IMP1 promotes tumor growth, dissemination and a tumor-initiating cell phenotype in colorectal cancer cell xenografts. Carcinogenesis, 2013, 34, 2647-2654.	2.8	64
18	Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice. Gastroenterology, 2018, 154, 1509-1523.e5.	1.3	61

#	Article	IF	Citations
19	The Effect of Anti-TNF-Â Therapy on Spinal Bone Mineral Density in Patients with Crohn's Disease. Annals of the New York Academy of Sciences, 2006, 1068, 543-556.	3.8	60
20	ATDC induces an invasive switch in KRAS-induced pancreatic tumorigenesis. Genes and Development, 2015, 29, 171-183.	5.9	58
21	Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Reports, 2021, 35, 108990.	6.4	49
22	Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell. Glycoconjugate Journal, 2001, 18, 649-659.	2.7	48
23	Interleukin 22 Signaling Regulates Acinar Cell Plasticity to Promote Pancreatic Tumor Development in Mice. Gastroenterology, 2020, 158, 1417-1432.e11.	1.3	48
24	Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer. Biochemistry and Biophysics Reports, 2016, 7, 144-149.	1.3	47
25	Doublecortin-Like Kinase 1 Is Elevated Serologically in Pancreatic Ductal Adenocarcinoma and Widely Expressed on Circulating Tumor Cells. PLoS ONE, 2015, 10, e0118933.	2.5	42
26	Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse. Journal of Clinical Investigation, 2017, 127, 3484-3495.	8.2	41
27	Dose–response effects of aerobic exercise on body composition among colon cancer survivors: a randomised controlled trial. British Journal of Cancer, 2017, 117, 1614-1620.	6.4	35
28	APOBEC3A drives deaminase domain-independent chromosomal instability to promote pancreatic cancer metastasis. Nature Cancer, 2021, 2, 1338-1356.	13.2	35
29	Severity of liver disease does not predict osteopenia or low bone mineral density in primary sclerosing cholangitis. Liver International, 2005, 25, 311-316.	3.9	32
30	Dose-response Effects of Aerobic Exercise Among Colon Cancer Survivors: A Randomized Phase II Trial. Clinical Colorectal Cancer, 2018, 17, 32-40.	2.3	32
31	Effects of exercise on circulating tumor cells among patients with resected stage I-III colon cancer. PLoS ONE, 2018, 13, e0204875.	2.5	31
32	Molecular Biology of Pancreatic Ductal Adenocarcinoma Progression. Progress in Molecular Biology and Translational Science, 2010, 97, 41-78.	1.7	29
33	Dose–response effects of exercise on insulin among colon cancer survivors. Endocrine-Related Cancer, 2018, 25, 11-19.	3.1	27
34	Terminal glycosylation of cystic fibrosis airway epithelial cells. Glycoconjugate Journal, 2000, 17, 385-391.	2.7	24
35	Epithelial to mesenchymal transition and the generation of stem-like cells in pancreatic cancer. Pancreatology, 2013, 13, 114-117.	1.1	23
36	ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes and Development, 2019, 33, 641-655.	5.9	20

#	Article	IF	CITATIONS
37	Advances in cholangiocarcinoma research: report from the third Cholangiocarcinoma Foundation Annual Conference. Journal of Gastrointestinal Oncology, 2016, 7, 819-827.	1.4	17
38	A clinical prediction model to assess risk for pancreatic cancer among patients with prediabetes. European Journal of Gastroenterology and Hepatology, 2021, Publish Ahead of Print, 33-38.	1.6	16
39	The effects of long-term therapy with proton pump inhibitors on meal stimulated gastrin. Digestive and Liver Disease, 2014, 46, 125-130.	0.9	15
40	Lactulose Is Associated With Decreased Risk of Clostridium difficile Infection in Decompensated Cirrhosis. Clinical Gastroenterology and Hepatology, 2017, 15, 953-954.	4.4	15
41	Circulating Tumor Cells and Transforming Growth Factor Beta in Resected Pancreatic Adenocarcinoma. Journal of Surgical Research, 2019, 243, 90-99.	1.6	9
42	Polarization of the Vacuolar Adenosine Triphosphatase Delineates a Transition to High-Grade Pancreatic Intraepithelial Neoplasm Lesions. Pancreas, 2014, 43, 1256-1263.	1.1	6
43	A combined, rational approach towards inhibition of the MEK-ERK and mTOR pathways in pancreatic ductal adenocarcinoma: Promise or deja vu?. Cancer Biology and Therapy, 2009, 8, 1902-1903.	3.4	5
44	Diagnosis of Pernicious Anemia and the Risk of Pancreatic Cancer. Pancreas, 2014, 43, 422-426.	1.1	5
45	A Young Woman With Gallstone Pancreatitis and Abnormal Liver Tests: When Is Endoscopic Retrograde Cholangiopancreatography Needed?. Clinical Gastroenterology and Hepatology, 2008, 6, 741-745.	4.4	3
46	Molecular biology of pancreatic ductal adenocarcinoma. Current Opinion in Gastroenterology, 2014, 30, 506-510.	2.3	1
47	High-Sensitivity Genomic Minimal Residual Disease Detection Reveals Multiclonal Hematopoiesis and Is Associated with Survival in Adult AML. Blood, 2015, 126, 225-225.	1.4	1
48	Abstract B02: Modeling of early to invasive stages of pancreatic cancer progression with an iPSC-like line from human pancreatic ductal adenocarcinoma. , 2014, , .		0