
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5165947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction of SARS-CoV-2 virus-like particles in plant. Scientific Reports, 2022, 12, 1005.	1.6	26
2	First Report of Cotton Leafroll Dwarf Virus Infecting <i>Hibiscus syriacus</i> in South Korea. Plant Disease, 2022, 106, 3003.	0.7	3
3	Complete genome sequence of a putative novel alphaendornavirus isolated from Fagopyrum esculentum in South Korea. Archives of Virology, 2022, , 1.	0.9	0

 $_{4}$ Comparative analysis of AGPase proteins and conserved domains in sweetpotato (<i>Ipomoea) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

5	Temporally distinct regulatory pathways coordinate thermo-responsive storage organ formation in potato. Cell Reports, 2022, 38, 110579.	2.9	10
6	The Arabidopsis cyclophilin CYP18-1 facilitates PRP18 dephosphorylation and the splicing of introns retained under heat stress. Plant Cell, 2022, 34, 2383-2403.	3.1	10
7	Identification of accession-specific variants and development of KASP markers for assessing the genetic makeup of Brassica rapa seeds. BMC Genomics, 2022, 23, 326.	1.2	2
8	Complete genome sequence of artemisia virus B, a new polerovirus infecting Artemisia princeps in South Korea. Archives of Virology, 2021, 166, 1495-1499.	0.9	4
9	Complete genome sequence of platycodon closterovirus 1, a novel putative member of the genus Closterovirus. Archives of Virology, 2021, 166, 2051-2054.	0.9	3
10	Genome-Wide Comparative Analysis of Flowering-Time Genes; Insights on the Gene Family Expansion and Evolutionary Perspective. Frontiers in Plant Science, 2021, 12, 702243.	1.7	8
11	Complete genome sequence and genome organization of scorzonera virus A (SCoVA), a novel member of the genus Potyvirus. Archives of Virology, 2021, 166, 2901-2904.	0.9	0
12	Suppression of Phytochrome-Interacting Factors Enhances Photoresponses of Seedlings and Delays Flowering With Increased Plant Height in Brachypodium distachyon. Frontiers in Plant Science, 2021, 12, 756795.	1.7	8
13	Complete genome sequence and genome organization of achyranthes virus A, a novel member of the genus Potyvirus. Archives of Virology, 2020, 165, 2695-2698.	0.9	3
14	Comprehensive analysis of Translationally Controlled Tumor Protein (TCTP) provides insights for lineage-specific evolution and functional divergence. PLoS ONE, 2020, 15, e0232029.	1.1	3
15	A TMT-Based Quantitative Proteome Analysis to Elucidate the TSWV Induced Signaling Cascade in Susceptible and Resistant Cultivars of Solanum lycopersicum. Plants, 2020, 9, 290.	1.6	15
16	Comparative proteomic analysis of host responses to Plasmodiophora brassicae infection in susceptible and resistant Brassica oleracea. Plant Biotechnology Reports, 2020, 14, 263-274.	0.9	11
17	Genomic detection and molecular characterization of two distinct isolates of cycas necrotic stunt virus from Paeonia suffruticosa and Daphne odora. Virus Genes, 2019, 55, 734-737.	0.7	7
18	Draft genome sequences of two oriental melons, Cucumis melo L. var. makuwa. Scientific Data, 2019, 6, 220.	2.4	13

#	Article	IF	CITATIONS
19	The expression of cyanobacterial glycolate–decarboxylation pathway genes improves biomass accumulation in Arabidopsis thaliana. Plant Biotechnology Reports, 2019, 13, 361-373.	0.9	6
20	Complete genome sequence of a tentative new member of the genus Badnavirus identified in Codonopsis lanceolata. Archives of Virology, 2019, 164, 1733-1737.	0.9	3
21	An insight into the tomato spotted wilt virus (TSWV), tomato and thrips interaction. Plant Biotechnology Reports, 2018, 12, 157-163.	0.9	26
22	Rice Transcription Factor OsDOF11 Modulates Sugar Transport by Promoting Expression of Sucrose Transporter and SWEET Genes. Molecular Plant, 2018, 11, 833-845.	3.9	90
23	Genome analysis of <i>Hibiscus syriacus</i> provides insights of polyploidization and indeterminate flowering in woody plants. DNA Research, 2017, 24, dsw049.	1.5	38
24	Silencing of an α-dioxygenase gene, Ca-DOX, retards growth and suppresses basal disease resistance responses in Capsicum annum. Plant Molecular Biology, 2017, 93, 497-509.	2.0	5
25	Genome-wide Analysis of Alternative Splicing in An Inbred Cabbage (Brassica oleracea L.) Line â€~HO' in Response to Heat Stress. Current Genomics, 2017, 19, 12-20.	0.7	10
26	Transcriptome analysis of the oriental melon (<i>Cucumis melo</i> L. var. <i>makuwa</i>) during fruit development. PeerJ, 2017, 5, e2834.	0.9	31
27	First Report of <i>Impatiens flower break virus</i> Infecting <i>Impatiens walleriana</i> in South Korea. Plant Disease, 2017, 101, 394-394.	0.7	4
28	The first complete sequence and genome structure of daphne virus Y. Archives of Virology, 2016, 161, 2905-2908.	0.9	3
29	Comparative transcriptome profiling and SSR marker identification in three Jerusalem artichoke (Helianthus tuberosus L.) cultivars exhibiting phenotypic variation. Plant Biotechnology Reports, 2016, 10, 447-461.	0.9	9
30	The complete sequence and genome organization of ligustrum virus A, a novel carlavirus. Archives of Virology, 2016, 161, 3593-3596.	0.9	3
31	Improvement of biomass accumulation of potato plants by transformation of cyanobacterial photorespiratory glycolate catabolism pathway genes. Plant Biotechnology Reports, 2016, 10, 269-276.	0.9	14
32	Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiological Research, 2016, 185, 13-21.	2.5	51
33	Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants. Virology, 2016, 492, 166-178.	1.1	27
34	De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa. Molecules and Cells, 2016, 39, 141-148.	1.0	7
35	Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene. Journal of Plant Biotechnology, 2016, 43, 341-346.	0.1	5
36	Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Journal of Integrative Agriculture, 2015, 14, 469-482.	1.7	31

#	Article	IF	CITATIONS
37	Overexpression of ADP-glucose pyrophosphorylase (IbAGPaseS) affects expression of carbohydrate regulated genes in sweet potato [Ipomoea batatas (L.) Lam. cv. Yulmi]. Genes and Genomics, 2015, 37, 595-605.	0.5	3
38	Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens. Plant Biotechnology Reports, 2015, 9, 451-458.	0.9	30
39	NPR1 is Instrumental in Priming for the Enhanced flg22-induced MPK3 and MPK6 Activation. Plant Pathology Journal, 2015, 31, 192-194.	0.7	27
40	High-Throughput Sequencing and De Novo Assembly of Brassica oleracea var. Capitata L. for Transcriptome Analysis. PLoS ONE, 2014, 9, e92087.	1.1	38
41	Expression of cucumber LOX genes in response to powdery mildew and defense-related signal molecules. Canadian Journal of Plant Science, 2014, 94, 845-850.	0.3	3
42	SIPMEI, a pollen-specific gene in tomato. Canadian Journal of Plant Science, 2014, 94, 73-83.	0.3	9
43	How does SA signaling link the Flg22 responses?. Plant Signaling and Behavior, 2014, 9, e972806.	1.2	13
44	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) Tj ETQq() 0	Overlock 10 1
45	Cucumber Pti1-L is a cytoplasmic protein kinase involved in defense responses and salt tolerance. Journal of Plant Physiology, 2014, 171, 817-822.	1.6	11
46	Identification of a pollen-specific gene, SICRK1 (RFK2) in tomato. Genes and Genomics, 2014, 36, 303-311.	0.5	5
47	Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 2014, 46, 270-278.	9.4	867
48	The Activated SA and JA Signaling Pathways Have an Influence on flg22-Triggered Oxidative Burst and Callose Deposition. PLoS ONE, 2014, 9, e88951.	1.1	135
49	Expression of Dengue virus EIII domain-coding gene in maize as an edible vaccine candidate. Journal of Plant Biotechnology, 2014, 41, 50-55.	0.1	4
50	Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling. Plant Pathology Journal, 2014, 30, 254-260.	0.7	20
51	Capsicum annuum homeobox 1 (CaHB1) is a nuclear factor that has roles in plant development, salt tolerance, and pathogen defense. Biochemical and Biophysical Research Communications, 2013, 442, 116-121.	1.0	19
52	<i>Agrobacterium</i> â€mediated transformation of reed (<i>Phragmites communis</i> Trinius) using mature seedâ€derived calli. GCB Bioenergy, 2013, 5, 73-80.	2.5	16

53	Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnology Reports, 2013, 7, 49-57.	0.9	94
54	Complete genome sequence of a South Korean isolate of Brugmansia mosaic virus. Archives of Virology, 2013, 158, 2019-2022.	0.9	4

4

#	Article	IF	CITATIONS
55	Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.). International Journal of Molecular Sciences, 2013, 14, 11871-11894.	1.8	39
56	Development of transgenic cucumbers expressing Arabidopsis Nit gene. Journal of Plant Biotechnology, 2013, 40, 198-202.	0.1	4
57	Microarray Analysis of bacterial blight resistance 1 mutant rice infected with Xanthomonas oryzae pv. oryzae. Plant Breeding and Biotechnology, 2013, 1, 354-365.	0.3	9
58	Procambium differentiation and shoot apical meristem development in somatic embryos of soybean (Glycine max L.). Journal of Plant Biotechnology, 2013, 40, 55-58.	0.1	2
59	Genome Sequence of the Plant Growth-Promoting Rhizobacterium <i>Bacillus</i> sp. Strain JS. Journal of Bacteriology, 2012, 194, 3760-3761.	1.0	35
60	Screening of Tissue-Specific Genes and Promoters in Tomato by Comparing Genome Wide Expression Profiles of Arabidopsis Orthologues. Molecules and Cells, 2012, 34, 53-60.	1.0	22
61	RISA: a new web-tool for Rapid Identification of SSRs and Analysis of primers. Genes and Genomics, 2012, 34, 583-590.	0.5	3
62	Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars. BMC Genomics, 2012, 13, 657.	1.2	49
63	A Genome-Wide Comparison of NB-LRR Type of Resistance Gene Analogs (RGA) in the Plant Kingdom. Molecules and Cells, 2012, 33, 385-392.	1.0	46
64	Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene. BMB Reports, 2012, 45, 589-594.	1.1	26
65	Development of Transgenic Maize using Immature Embryos of Hill Genotype as a Vaccine Candidate. American Journal of Biochemistry and Biotechnology, 2012, 8, 21-25.	0.1	0
66	Alteration of floral organ identity by over-expression of IbMADS3-1 in tobacco. Transgenic Research, 2011, 20, 365-376.	1.3	3
67	Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiology and Biochemistry, 2011, 49, 891-897.	2.8	58
68	The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.). Journal of Plant Biotechnology, 2011, 38, 198-202.	0.1	6
69	Anomalous somatic embryos formation and plant regeneration from the cultures of immature embryos of Camellia japonica L Journal of Plant Biotechnology, 2011, 38, 258-262.	0.1	2
70	Comparative genomic analysis of mitogen activated protein kinase gene family in grapevine. Genes and Genomics, 2010, 32, 275-281.	0.5	18
71	A novel WD40 protein, BnSWD1, is involved in salt stress in Brassica napus. Plant Biotechnology Reports, 2010, 4, 165-172.	0.9	23
72	A novel pepper (<i>Capsicum annuum</i>) receptorâ€like kinase functions as a negative regulator of plant cell death via accumulation of superoxide anions. New Phytologist, 2010, 185, 701-715.	3.5	32

#	Article	IF	CITATIONS
73	Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiologia Plantarum, 2010, 138, 520-533.	2.6	82
74	Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiologia Plantarum, 2010, 140, 153-162.	2.6	85
75	Silencing of SIFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants. Biochemical and Biophysical Research Communications, 2010, 399, 750-754.	1.0	15
76	Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. Journal of Experimental Botany, 2010, 61, 2499-2506.	2.4	98
77	The development of transgenic maize expressing Actinobacillus pleuropneumoniae ApxIIA gene using Agrobacterium. Journal of Plant Biotechnology, 2010, 37, 313-318.	0.1	4
78	Evolution of ribosomal DNA-derived satellite repeat in tomato genome. BMC Plant Biology, 2009, 9, 42.	1.6	46
79	Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants. Molecular Breeding, 2009, 24, 233-244.	1.0	47
80	Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone. Photosynthetica, 2009, 47, 19-25.	0.9	32
81	The development of herbicide-resistant maize: stable Agrobacterium-mediated transformation of maize using explants of type II embryogenic calli. Plant Biotechnology Reports, 2009, 3, 277-283.	0.9	9
82	Ectopic Expression of a Cold-Responsive CuZn Superoxide Dismutase Gene, SodCc1, in Transgenic Rice (Oryza sativa L.). Journal of Plant Biology, 2009, 52, 154-160.	0.9	20
83	Molecular characterization of the sweet potato peroxidase <i>SWPA4 </i> promoter which responds to abiotic stresses and pathogen infection. Physiologia Plantarum, 2009, 135, 390-399.	2.6	9
84	Selection of transgenic sweetpotato plants expressing 2-Cys peroxiredoxin with enhanced tolerance to oxidative stress. Journal of Plant Biotechnology, 2009, 36, 75-80.	0.1	2
85	Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweetpotato. BMB Reports, 2009, 42, 271-276.	1.1	13
86	Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Research, 2008, 17, 705-715.	1.3	89
87	Development of selection marker-free transgenic potato plants with enhanced tolerance to oxidative stress. Journal of Plant Biology, 2008, 51, 401-407.	0.9	14
88	Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced to exidative, salt, and drought stresses. Plant Cell Reports, 2008, 27, 687-698.	2.8	133
89	Responses of MxPPO overexpressing transgenic tall fescue plants to two diphenyl-ether herbicides, oxyfluorfen and acifluorfen. Acta Physiologiae Plantarum, 2008, 30, 745-754.	1.0	14
90	Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta, 2008, 227, 867-881.	1.6	123

#	Article	IF	CITATIONS
91	Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato. Plant Physiology and Biochemistry, 2008, 46, 196-204.	2.8	16
92	Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress. BMB Reports, 2008, 41, 259-265.	1.1	9
93	Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. Journal of Plant Physiology, 2007, 164, 1626-1638.	1.6	310
94	Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Reports, 2007, 26, 591-598.	2.8	214
95	Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Molecular Breeding, 2007, 19, 227-239.	1.0	101
96	Differential expression of 10 sweetpotato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiology and Biochemistry, 2007, 45, 908-914.	2.8	44
97	Development of Antibiotics Marker-free Potato Having Resistance Against Two Herbicides. Journal of Plant Biotechnology, 2007, 34, 253-261.	0.1	1
98	Expression of CP4 5-Enol-Pyruvylshikimate-3- Phosphate Synthase Transgene in Inbred Line of Korean Domestic Maize (Zea may L.). Journal of Plant Biotechnology, 2007, 34, 375-380.	0.1	1
99	Enhanced Tolerance to Oxidative Stress of Transgenic Potato (cv. Superior) Plants Expressing Both SOD and APX in Chloroplasts. Journal of Plant Biotechnology, 2007, 34, 299-305.	0.1	3
100	Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Reports, 2006, 25, 1380-1386.	2.8	212
101	High-yield production of functional human lactoferrin in transgenic cell cultures of siberian ginseng (Acanthopanax senticosus). Biotechnology and Bioprocess Engineering, 2006, 11, 442-448.	1.4	16
102	Enhanced Resistance of Transgenic Sweetpotato (Ipomoea batatas Lam.) Plants to Multiple Environmental Stresses Treated with Combination of Water Stress, High Light and High Temperature Stresses. Journal of Ecology and Environment, 2006, 29, 479-484.	1.6	0
103	Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiology and Biochemistry, 2005, 43, 55-60.	2.8	28
104	Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology, 2005, 162, 465-472.	1.6	305
105	Development of a Screening System for Plant Defense-Inducing Agent using Transgenic Tobacco Plant with PR-1a Promoter and GUS Gene. Plant Pathology Journal, 2005, 21, 288-292.	0.7	5
106	Alterations in intracellular and extracellular activities of antioxidant enzymes during suspension culture of sweetpotato. Phytochemistry, 2004, 65, 2471-2476.	1.4	23
107	Differential expression of 10Âsweetpotato peroxidase genes in response to bacterial pathogen, Pectobacterium chrysanthemi. Plant Physiology and Biochemistry, 2004, 42, 451-455.	2.8	36
108	A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Molecular Biology, 2003, 51, 831-838.	2.0	150

#	Article	IF	CITATIONS
109	High expression of a human lactoferrin in transgenic tobacco cell cultures. Biotechnology Letters, 2003, 25, 213-218.	1.1	32
110	Transgenic cucumber fruits that produce elevated level of an anti-aging superoxide dismutase. Molecular Breeding, 2003, 11, 213-220.	1.0	20
111	Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. Journal of Plant Physiology, 2003, 160, 347-353.	1.6	158
112	Transgenic Ginseng Cell Lines That Produce High levels of a Human Lactoferrin. Planta Medica, 2003, 69, 1005-1008.	0.7	24
113	Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light. Planta, 2002, 216, 315-324.	1.6	80
114	Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant, Cell and Environment, 2002, 25, 873-882.	2.8	194
115	Transgenic Tomato Plants That Overexpress Superoxide Dismutase in Fruits. Journal of Plant Biotechnology, 2002, 29, 7-13.	0.1	0
116	Differential expression of four sweet potato peroxidase genes in response to abscisic acid and ethephon. Phytochemistry, 2000, 54, 19-22.	1.4	23
117	Molecular Cloning of a cDNA Encoding Ribosome Inactivating Protein from Amaranthus viridis and Its Expression in E. coli. Molecules and Cells, 2000, 10, 8-12.	1.0	25
118	High frequency shoot induction and plant regeneration from cotyledonary hypocotyl explants of cucumber (Cucumis sativus L.) seedlings. Journal of Plant Physiology, 2000, 157, 136-139.	1.6	8
119	Differential Resistance to Methyl Viologen in Transgenic Tobacco Plants that Express Sweet Potato Peroxidases. Journal of Plant Physiology, 2000, 156, 504-509.	1.6	25
120	Molecular characterization of cDNAs for two anionic peroxidases from suspension cultures of sweet potato. Molecular Genetics and Genomics, 1999, 261, 941-947.	2.4	58
121	Molecular characterization and expression of a cDNA encoding copper/zinc superoxide dismutase		