Paolo P Mazzeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5165886/publications.pdf

Version: 2024-02-01

44 papers

1,088 citations

430754 18 h-index 434063 31 g-index

47 all docs

47 docs citations

47 times ranked

1309 citing authors

#	Article	IF	Citations
1	Bis-isonicotinoyl linkers containing polyaromatic scaffolds: synthesis, structure and spectroscopic properties. Physical Chemistry Chemical Physics, 2022, 24, 1191-1201.	1.3	1
2	Metal-organic framework-based magnetic dispersive micro-solid-phase extraction for the gas chromatography–mass spectrometry determination of polycyclic aromatic compounds in water samples. Journal of Chromatography A, 2022, 1671, 463010.	1.8	13
3	Exploiting the Reducing Properties of Lignin for the Development of an Effective Lignin@Cu ₂ O Pesticide. Advanced Sustainable Systems, 2022, 6, .	2.7	9
4	Comparison of different synthetic approaches for the fabrication of a bio-inspired 1D-coordination polymer: From solution chemistry to mechanochemistry. Inorganica Chimica Acta, 2022, 539, 121010.	1.2	1
5	Chemometric-assisted cocrystallization: supervised pattern recognition for predicting the formation of new functional cocrystals. Chemometrics and Intelligent Laboratory Systems, 2022, 226, 104580.	1.8	9
6	On the Mechanism of Cocrystal Mechanochemical Reaction via Low Melting Eutectic: A Time-Resolved In Situ Monitoring Investigation. Crystal Growth and Design, 2022, 22, 4260-4267.	1.4	9
7	Dispensing Essential Oil Components through Cocrystallization: Sustainable and Smart Materials for Food Preservation and Agricultural Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 8388-8399.	3.2	15
8	Synthesis, spectroscopic and structural characterization and solution stability of ruthenium sandwich complexes containing 1,8-naphthalimide ligands. Inorganica Chimica Acta, 2021, 517, 120190.	1.2	2
9	Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angewandte Chemie, 2021, 133, 10282-10290.	1.6	1
10	Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angewandte Chemie - International Edition, 2021, 60, 10194-10202.	7.2	18
11	Development of novel cocrystal-based active food packaging by a Quality by Design approach. Food Chemistry, 2021, 347, 129051.	4.2	25
12	Mechanochemical Preparation of Dipyridyl-Naphthalenediimide Cocrystals: Relative Role of Halogen-Bond and π–π Interactions. Crystal Growth and Design, 2021, 21, 5687-5696.	1.4	9
13	Cocrystallization as a tool to stabilize liquid active ingredients. Crystallography Reviews, 2021, 27, 102-123.	0.4	11
14	Structural interplay between strontium and calcium in \hat{l}_{\pm} -CaHPO4 and \hat{l}_{\pm} -SrHPO4. Ceramics International, 2021, 47, 24412-24420.	2.3	5
15	Synthesis, characterization, antimicrobial and cytotoxic activity and DNA-binding properties of d-metal complexes with hydrazones of Girard's T and P reagents. Journal of Biological Inorganic Chemistry, 2021, 26, 863-880.	1.1	6
16	Stabilization of liquid active guests <i>via</i> nanoconfinement into a flexible microporous metalâ€"organic framework. CrystEngComm, 2021, 23, 7262-7269.	1.3	6
17	On the nature of recurrent Auâ<ï€ motifs in tris(2,2′-bipyridine)M(<scp>ii</scp>) (M = Fe, Co and Ni) dicyanoaurate(<scp>i</scp>) salts: X-ray analysis and theoretical rationalization. Dalton Transactions, 2021, 50, 16954-16960.	1.6	4
18	Changing the game of time resolved X-ray diffraction on the mechanochemistry playground by downsizing. Nature Communications, 2021, 12, 6134.	5.8	50

#	Article	IF	CITATIONS
19	Diversity through Similarity: A World of Polymorphs, Solid Solutions, and Cocrystals in a Vial of 4,4 \hat{a} \in 2-Diazopyridine. Crystal Growth and Design, 2020, 20, 636-644.	1.4	18
20	Making Agriculture More Sustainable: An Environmentally Friendly Approach to the Synthesis of Lignin@Cu Pesticides. ACS Sustainable Chemistry and Engineering, 2020, 8, 14886-14895.	3.2	30
21	A zinc mixed-ligand microporous metal-organic framework as solid-phase microextraction coating for priority polycyclic aromatic hydrocarbons from water samples. Microchemical Journal, 2020, 154, 104646.	2.3	26
22	Systematic coformer contribution to cocrystal stabilization: energy and packing trends. CrystEngComm, 2020, 22, 7341-7349.	1.3	17
23	Crystal engineering guidelines for ruthenium based wheel-and-axle compounds. Coordination Chemistry Reviews, 2020, 414, 213302.	9.5	8
24	Site-Selective Double and Tetracyclization Routes to Fused Polyheterocyclic Structures by Pd-Catalyzed Carbonylation Reactions. Organic Letters, 2020, 22, 1569-1574.	2.4	21
25	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17342-17350.	7.2	16
26	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17503-17511.	1.6	11
27	Designing a Palette of Cocrystals Based on Essential Oil Constituents for Agricultural Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 17929-17940.	3.2	42
28	X-ray, optical, vibrational, electrical, and DFT study of the polymorphic structure of ethylenediammonium bis iodate î±-C2H10N2(IO3)2 and î²-C2H10N2(IO3)2. Structural Chemistry, 2019, 30, 1911-1928.	1.0	2
29	Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. Journal of Organic Chemistry, 2019, 84, 3477-3490.	1.7	16
30	Structural, thermal and topological characterization of coordination networks containing flexible aminocarboxylate ligands with a central biphenylene scaffold. CrystEngComm, 2019, 21, 6365-6373.	1.3	11
31	Structure, vibrational, electrical and optical study of [C2H10N2] (IO3)2·4HIO3. Journal of Molecular Structure, 2019, 1179, 18-32.	1.8	7
32	A synergic approach of X-ray powder diffraction and Raman spectroscopy for crystal structure determination of 2,3-thienoimide capped oligothiophenes. Physical Chemistry Chemical Physics, 2018, 20, 3630-3636.	1.3	10
33	Flexible porous molecular materials responsive to CO ₂ , CH ₄ and Xe stimuli. Journal of Materials Chemistry A, 2018, 6, 14231-14239.	5.2	87
34	Liquid Nicotine Tamed in Solid Forms by Cocrystallization. Crystal Growth and Design, 2017, 17, 4958-4964.	1.4	35
35	White luminescence achieved by a multiple thermochromic emission in a hybrid organic–inorganic compound based on 3-picolylamine and copper(<scp>i</scp>) iodide. Dalton Transactions, 2016, 45, 17939-17947.	1.6	37
36	Dual luminescence in solid Cul(piperazine): hypothesis of an emissive 1-D delocalized excited state. Dalton Transactions, 2015, 44, 13003-13006.	1.6	24

#	Article	IF	CITATION
37	Mechanochemical preparation of copper iodide clusters of interest for luminescent devices. Faraday Discussions, 2014, 170, 93-107.	1.6	39
38	Phosphorescence quantum yield enhanced by intermolecular hydrogen bonds in Cu4I4 clusters in the solid state. Dalton Transactions, 2014, 43, 9448.	1.6	35
39	Tuning the colour and efficiency in OLEDs by using amorphous or polycrystalline emitting layers. Journal of Materials Chemistry C, 2013, 1, 1823.	2.7	30
40	Switch On/Switch Off Signal in an MOFâ€Guest Crystalline Device. European Journal of Inorganic Chemistry, 2013, 2013, 4459-4465.	1.0	24
41	Polymorph and isomer conversion of complexes based on CuI and PPh ₃ easily observed via luminescence. Dalton Transactions, 2012, 41, 531-539.	1.6	105
42	Solid-state reactivity of copper(i) iodide: luminescent 2D-coordination polymers of Cul with saturated bidentate nitrogen bases. New Journal of Chemistry, 2011, 35, 339-344.	1.4	72
43	Reversible Interconversion between Luminescent Isomeric Metal–Organic Frameworks of [Cu ₄ 1 ₄ 46 (DABCO) ₂ 1 (DABCO=1,4â€Diazabicyclo[2.2.2]octane). Chemistry - A European Journal, 2010, 16, 1553-1559.	1.7	125
44	Solvent-free preparation of co-crystals of phenazine and acridine with vanillin. Thermochimica Acta, 2010, 507-508, 1-8.	1.2	42