List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5165637/publications.pdf Version: 2024-02-01

		117625	168389
108	3,474	34	53
papers	citations	h-index	g-index
115	115	115	5219
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The good, the bad and the ugly: the impact of extracellular vesicles on the cardiovascular system. Journal of Physiology, 2023, 601, 4837-4852.	2.9	6
2	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	3.8	30
3	A new weapon in the armamentarium to tackle inflammation associated with myocardial infarction. Revista Portuguesa De Cardiologia, 2022, 41, 207-208.	0.5	0
4	Phagolysosomal remodeling to confine Candida albicans in the macrophage. Trends in Microbiology, 2022, 30, 519-523.	7.7	7
5	LAMP2A regulates the loading of proteins into exosomes. Science Advances, 2022, 8, eabm1140.	10.3	69
6	1,8-Cineole ameliorates right ventricle dysfunction associated with pulmonary arterial hypertension by restoring connexin43 and mitochondrial homeostasis. Pharmacological Research, 2022, 180, 106151.	7.1	8
7	Cx43â€mediated sorting of miRNAs into extracellular vesicles. EMBO Reports, 2022, 23, e54312.	4.5	12
8	The Footprint of Exosomes in the Radiation-Induced Bystander Effects. Bioengineering, 2022, 9, 243.	3.5	11
9	Cellular and molecular mechanisms underlying plasma membrane functionality and integrity. Journal of Cell Science, 2022, 135, .	2.0	3
10	Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385.	3.8	53
11	Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends in Molecular Medicine, 2021, 27, 248-262.	6.7	45
12	RyR2 regulates Cx43 hemichannel intracellular Ca2+-dependent activation in cardiomyocytes. Cardiovascular Research, 2021, 117, 123-136.	3.8	31
13	A novel cardioprotective strategy targeting mitochondrial reactive oxygen species production independent of antioxidant activity. Revista Portuguesa De Cardiologia, 2021, 40, 283-284.	0.5	0
14	A novel cardioprotective strategy targeting mitochondrial reactive oxygen species production independent of antioxidant activity. Revista Portuguesa De Cardiologia (English Edition), 2021, 40, 283-284.	0.2	0
15	Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading. Biomolecules, 2021, 11, 770.	4.0	31
16	COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160.	3.8	26
17	The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules, 2021, 26, 3506.	3.8	18
18	Cellular crosstalk in cardioprotection: Where and when do reactive oxygen species play a role?. Free Radical Biology and Medicine, 2021, 169, 397-409.	2.9	16

#	Article	IF	CITATIONS
19	MYOC Gene Sequencing Analysis in Primary Open-Angle Glaucoma Patients from the Centre Region of Portugal. Acta Medica Portuguesa, 2021, 34, 586.	0.4	0
20	Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovascular Research, 2021, , .	3.8	10
21	Cardiac phospholipidome is altered during ischemia and reperfusion in an ex vivo rat model. Biochemistry and Biophysics Reports, 2021, 27, 101037.	1.3	4
22	IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria: guidelines of the EU-CARDIOPROTECTION COST Action. Basic Research in Cardiology, 2021, 116, 52.	5.9	73
23	Immune cell subsets as a marker of development of heart failure: The application of bioinformatics tools. Revista Portuguesa De Cardiologia, 2021, 40, 849-849.	0.5	Ο
24	Immune cell subsets as a marker of development of heart failure: The application of bioinformatics tools. Revista Portuguesa De Cardiologia (English Edition), 2021, 40, 849-851.	0.2	0
25	Simple and Fast SEC-Based Protocol to Isolate Human Plasma-Derived Extracellular Vesicles for Transcriptional Research. Molecular Therapy - Methods and Clinical Development, 2020, 18, 723-737.	4.1	24
26	A new predictive marker of ventricular remodeling associated with aortic stenosis. Revista Portuguesa De Cardiologia, 2020, 39, 389-390.	0.5	3
27	lschaemia impacts TNT-mediated communication between cardiac cells. Current Research in Cell Biology, 2020, 1, 100001.	2.4	8
28	Micro-RNA Analysis in Pulmonary Arterial Hypertension. JACC Basic To Translational Science, 2020, 5, 1149-1162.	4.1	24
29	Effect of Different Irrigation Solutions on the Diffusion of MTA Cement into the Root Canal Dentin. Materials, 2020, 13, 5472.	2.9	7
30	Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules, 2020, 10, 1225.	4.0	24
31	Targeting mitochondrial fusion and fission proteins for cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 6571-6585.	3.6	63
32	Mitochondrial ion channels as targets for cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 7102-7114.	3.6	48
33	EHD1 Modulates Cx43 Gap Junction Remodeling Associated With Cardiac Diseases. Circulation Research, 2020, 126, e97-e113.	4.5	44
34	Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells. Glia, 2020, 68, 2705-2724.	4.9	26
35	Caveolin-1 Modulation Increases Efficacy of a Galacto-Conjugated Phthalocyanine in Bladder Cancer Cells Resistant to Photodynamic Therapy. Molecular Pharmaceutics, 2020, 17, 2145-2154.	4.6	12
36	A Conserved LIR Motif in Connexins Mediates Ubiquitin-Independent Binding to LC3/GABARAP Proteins. Cells, 2020, 9, 902.	4.1	4

#	Article	IF	CITATIONS
37	The Role of Proteostasis in the Regulation of Cardiac Intercellular Communication. Advances in Experimental Medicine and Biology, 2020, 1233, 279-302.	1.6	10
38	Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Science Alliance, 2020, 3, e202000821.	2.8	26
39	Cx43 and Associated Cell Signaling Pathways Regulate Tunneling Nanotubes in Breast Cancer Cells. Cancers, 2020, 12, 2798.	3.7	31
40	A new predictive marker of ventricular remodeling associated with aortic stenosis. Revista Portuguesa De Cardiologia (English Edition), 2020, 39, 389-390.	0.2	0
41	Biological Functions of Connexin43 Beyond Intercellular Communication. Trends in Cell Biology, 2019, 29, 835-847.	7.9	54
42	Exosomes and STUB1/CHIP cooperate to maintain intracellular proteostasis. PLoS ONE, 2019, 14, e0223790.	2.5	14
43	Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 2019, 115, 1156-1166.	3.8	106
44	Ischaemia alters the effects of cardiomyocyteâ€derived extracellular vesicles on macrophage activation. Journal of Cellular and Molecular Medicine, 2019, 23, 1137-1151.	3.6	28
45	Chemical characterization and cytotoxic potential of an ellagitannin-enriched fraction from Fragaria vesca leaves. Arabian Journal of Chemistry, 2019, 12, 3652-3666.	4.9	20
46	Protective Effects of Phenylpropanoids and Phenylpropanoid-rich Essential Oils on the Cardiovascular System. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1459-1471.	2.4	10
47	Disclosing the functional changes of two genetic alterations in a patient with Chronic Progressive External Ophthalmoplegia: Report of the novel mtDNA m.7486G>A variant. Neuromuscular Disorders, 2018, 28, 350-360.	0.6	10
48	Elucidation of the dynamic nature of interactome networks: A practical tutorial. Journal of Proteomics, 2018, 171, 116-126.	2.4	1
49	MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1. Cardiovascular Research, 2018, 114, 53-64.	3.8	72
50	Intravascular imaging, histopathological analysis, and catecholamine quantification following catheter-based renal denervation in a swine model: the impact of prebifurcation energy delivery. Hypertension Research, 2018, 41, 708-717.	2.7	5
51	Signalling mechanisms that regulate metabolic profile and autophagy of acute myeloid leukaemia cells. Journal of Cellular and Molecular Medicine, 2018, 22, 4807-4817.	3.6	14
52	A Importância da Comunicação em Saúde. Revista Internacional Em LÃngua Portuguesa, 2018, 33, 15-25.	0.0	0
53	Characterization of phospholipid nitroxidation by LC-MS in biomimetic models and in H9c2 Myoblast using a lipidomic approach. Free Radical Biology and Medicine, 2017, 106, 219-227.	2.9	12
54	Hyperglycemia-induced degradation of HIF-11̂± contributes to impaired response of cardiomyocytes to hypoxia. Revista Portuguesa De Cardiologia, 2017, 36, 367-373.	0.5	11

#	Article	IF	CITATIONS
55	Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 2017, 113, 1338-1350.	3.8	193
56	Role of connexin 43 in different forms of intercellular communication – gap junctions, extracellular vesicles and tunnelling nanotubes. Journal of Cell Science, 2017, 130, 3619-3630.	2.0	119
57	Hyperglycemia-induced degradation of HIF-1α contributes to impaired response of cardiomyocytes to hypoxia. Revista Portuguesa De Cardiologia (English Edition), 2017, 36, 367-373.	0.2	6
58	Clioblastoma entities express subtle differences in molecular composition and response to treatment. Oncology Reports, 2017, 38, 1341-1352.	2.6	24
59	The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells. Translational Oncology, 2017, 10, 555-569.	3.7	21
60	Targeted Approach for Proteomic Analysis of a Hidden Membrane Protein. Methods in Molecular Biology, 2017, 1619, 151-172.	0.9	1
61	Molecular control of chaperone-mediated autophagy. Essays in Biochemistry, 2017, 61, 663-674.	4.7	57
62	Cardiac-released extracellular vesicles can activate endothelial cells. Annals of Translational Medicine, 2017, 5, 64-64.	1.7	11
63	Alteration in Phospholipidome Profile of Myoblast H9c2 Cell Line in a Model of Myocardium Starvation and Ischemia. Journal of Cellular Physiology, 2016, 231, 2266-2274.	4.1	29
64	Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the antiâ€ŧumour therapeutic approach with doxorubicin. Journal of Extracellular Vesicles, 2016, 5, 32538.	12.2	62
65	One small step for exosomes, one giant leap for Kawasaki disease. Revista Portuguesa De Cardiologia (English Edition), 2016, 35, 275-276.	0.2	0
66	One small step for exosomes, one giant leap for Kawasaki disease. Revista Portuguesa De Cardiologia, 2016, 35, 275-276.	0.5	0
67	Proteostasis and SUMO in the heart. International Journal of Biochemistry and Cell Biology, 2016, 79, 443-450.	2.8	17
68	The role of galectin-1 in inÂvitro and inÂvivo photodynamic therapy with a galactodendritic porphyrin. European Journal of Cancer, 2016, 68, 60-69.	2.8	32
69	Mitochondria-Targeted Photodynamic Therapy with a Galactodendritic Chlorin to Enhance Cell Death in Resistant Bladder Cancer Cells. Bioconjugate Chemistry, 2016, 27, 2762-2769.	3.6	37
70	Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids and Surfaces B: Biointerfaces, 2016, 139, 1-9.	5.0	39
71	Protective Effects of Terpenes on the Cardiovascular System: Current Advances and Future Perspectives. Current Medicinal Chemistry, 2016, 23, 4559-4600.	2.4	29
72	Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Scientific Reports, 2015, 5, 13243.	3.3	135

#	Article	IF	CITATIONS
73	K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Scientific Reports, 2015, 5, 10210.	3.3	77
74	Connexin 43 ubiquitination determines the fate of gap junctions: restrict to survive. Biochemical Society Transactions, 2015, 43, 471-475.	3.4	9
75	Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie, 2015, 112, 196-201.	2.6	37
76	To beat or not to beat: degradation of Cx43 imposes the heart rhythm. Biochemical Society Transactions, 2015, 43, 476-481.	3.4	19
77	Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 722-732.	2.4	33
78	Autophagy and Ubiquitination in Cardiovascular Diseases. DNA and Cell Biology, 2015, 34, 243-251.	1.9	25
79	Bacterial Cellulose As a Support for the Growth of Retinal Pigment Epithelium. Biomacromolecules, 2015, 16, 1341-1351.	5.4	57
80	Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43Âin cardiomyocytes. Biochemical Journal, 2015, 467, 231-245.	3.7	74
81	Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart*. Molecular and Cellular Proteomics, 2015, 14, 3040-3055.	3.8	55
82	Role of Chaperone-Mediated Autophagy in Ageing and Neurodegeneration. Current Topics in Neurotoxicity, 2015, , 25-40.	0.4	1
83	New platinum(II)–bipyridyl corrole complexes: Synthesis, characterization and binding studies with DNA and HSA. Journal of Inorganic Biochemistry, 2015, 153, 32-41.	3.5	43
84	Cholinergic stimulation with pyridostigmine protects myocardial infarcted rats against ischemic-induced arrhythmias and preserves connexin43 protein. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H101-H107.	3.2	18
85	Synthesis, characterization and biomolecule-binding properties of novel tetra-platinum(<scp>ii</scp>)-thiopyridylporphyrins. Dalton Transactions, 2015, 44, 530-538.	3.3	29
86	The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis. PLoS Computational Biology, 2015, 11, e1004436.	3.2	52
87	P145Degradation of gap junction protein Cx43 by autophagy in ischemic heart is determined by the triggering signal: the role of AMPK Vs Beclin1. Cardiovascular Research, 2014, 103, S25.4-S25.	3.8	1
88	DNAJB4 molecular chaperone distinguishes WT from mutant E-cadherin, determining their fate in vitro and in vivo. Human Molecular Genetics, 2014, 23, 2094-2105.	2.9	20
89	AMSHâ€mediated deubiquitination of Cx43 regulates internalization and degradation of gap junctions. FASEB Journal, 2014, 28, 4629-4641.	0.5	37
90	Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation. Journal of Ethnopharmacology, 2014, 158, 113-122.	4.1	30

#	Article	IF	CITATIONS
91	Effects of treatment with pyridostigmine on ECG, hemodynamics and connexin 43 after acute myocardial infarct in anesthetized rats (1169.13). FASEB Journal, 2014, 28, 1169.13.	0.5	Ο
92	Ubiquitin induces interference in communication: ubiquitination of cx43 leads to gap junction degradation in ischemic heart. European Heart Journal, 2013, 34, 1604-1604.	2.2	0
93	To beat or not to beat: detrimental autophagy contributes to gap junctions degradation in ischemic heart. European Heart Journal, 2013, 34, 775-775.	2.2	0
94	STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy, 2013, 9, 1349-1366.	9.1	159
95	Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Molecular Biology of the Cell, 2012, 23, 2156-2169.	2.1	110
96	Ubiquitin-mediated internalization of connexin43 is independent of the canonical endocytic tyrosine-sorting signal. Biochemical Journal, 2011, 437, 255-267.	3.7	49
97	Eps15 interacts with ubiquitinated Cx43 and mediates its internalization. Experimental Cell Research, 2009, 315, 3587-3597.	2.6	104
98	Actin in the endocytic pathway: From yeast to mammals. FEBS Letters, 2008, 582, 2112-2119.	2.8	87
99	The proteasome regulates the interaction between Cx43 and ZO-1. Journal of Cellular Biochemistry, 2007, 102, 719-728.	2.6	29
100	Subcellular Redistribution of Components of the Ubiquitin–Proteasome Pathway during Lens Differentiation and Maturation. , 2005, 46, 1386.		27
101	High Glucose Down-regulates Intercellular Communication in Retinal Endothelial Cells by Enhancing Degradation of Connexin 43 by a Proteasome-dependent Mechanism. Journal of Biological Chemistry, 2004, 279, 27219-27224.	3.4	78
102	7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells. Cell Communication and Signaling, 2004, 2, 2.	6.5	14
103	Cholesterol oxides mediated changes in cytoskeletal organisation involves Rho GTPasesâ~†â~†. Experimental Cell Research, 2003, 291, 502-513.	2.6	15
104	Lens fibers have a fully functional ubiquitin-proteasome pathway. Experimental Eye Research, 2003, 76, 623-631.	2.6	46
105	Phosphorylation of connexin 43 acts as a stimuli for proteasome-dependent degradation of the protein in lens epithelial cells. Molecular Vision, 2003, 9, 24-30.	1.1	41
106	7-ketocholesterol stimulates differentiation of lens epithelial cells. Molecular Vision, 2003, 9, 497-501.	1.1	9
107	Cholesterol may act as an antioxidant in lens membranes. Current Eye Research, 1999, 18, 448-454.	1.5	29
108	Cholesterol Oxides Accumulate in Human Cataracts. Experimental Eye Research, 1998, 66, 645-652.	2.6	61

7