Eneko Garaio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5165625/publications.pdf Version: 2024-02-01

ENERO CARAIO

#	Article	IF	CITATIONS
1	Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews, 2015, 2, 041302.	11.3	615
2	Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size. Journal of Physical Chemistry C, 2018, 122, 2367-2381.	3.1	178
3	Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects. Journal of Physical Chemistry C, 2016, 120, 8370-8379.	3.1	153
4	Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe ₃ O ₄ Nanoflowers. ACS Applied Materials & Interfaces, 2016, 8, 25162-25169.	8.0	107
5	Optimal Parameters for Hyperthermia Treatment Using Biomineralized Magnetite Nanoparticles: Theoretical and Experimental Approach. Journal of Physical Chemistry C, 2016, 120, 24437-24448.	3.1	94
6	Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis. Inorganic Chemistry, 2017, 56, 8232-8243.	4.0	83
7	A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2014, 368, 432-437.	2.3	81
8	Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry). Nanotechnology, 2015, 26, 015704.	2.6	80
9	Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. Small, 2019, 15, e1902626.	10.0	79
10	A multifrequency eletromagnetic applicator with an integrated AC magnetometer for magnetic hyperthermia experiments. Measurement Science and Technology, 2014, 25, 115702.	2.6	69
11	Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia. Scientific Reports, 2016, 6, 39300.	3.3	50
12	Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization. International Journal of Hyperthermia, 2020, 37, 976-991.	2.5	33
13	Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe. Applied Physics Letters, 2015, 107, .	3.3	30
14	In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia. Genes, 2017, 8, 61.	2.4	15
15	Iron Oxide Nanorings and Nanotubes for Magnetic Hyperthermia: The Problem of Intraparticle Interactions. Nanomaterials, 2021, 11, 1380.	4.1	12
16	Instrumentation for Magnetic Hyperthermia. , 2019, , 111-138.		7
17	Martensitic transformation controlled by electromagnetic field: From experimental evidence to wireless actuator applications. Materials and Design, 2022, 219, 110746.	7.0	2