
Robert D Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5165607/publications.pdf Version: 2024-02-01

POREDT D HALL

#	Article	lF	CITATIONS
1	Analyses of metabolic activity in peanuts under hermetic storage at different relative humidity levels. Food Chemistry, 2022, 373, 131020.	4.2	16
2	Coffee berry and green bean chemistry – Opportunities for improving cup quality and crop circularity. Food Research International, 2022, 151, 110825.	2.9	27
3	High-throughput plant phenotyping: a role for metabolomics?. Trends in Plant Science, 2022, 27, 549-563.	4.3	44
4	Towards superior plant-based foods using metabolomics. Current Opinion in Biotechnology, 2021, 70, 23-28.	3.3	35
5	Maltodextrin improves physical properties and volatile compound retention of spray-dried asparagus concentrate. LWT - Food Science and Technology, 2021, 142, 111058.	2.5	25
6	Stir bar sorptive extraction of aroma compounds in soy sauce: Revealing the chemical diversity. Food Research International, 2021, 144, 110348.	2.9	8
7	Natural diversity in health related phytochemicals in Turkish tomatoes. Journal of Berry Research, 2021, 11, 279-299.	0.7	2
8	Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 2021, 18, 747-756.	9.0	403
9	Systematic selection of competing metabolomics methods in a metabolite-sensory relationship study. Metabolomics, 2021, 17, 77.	1.4	3
10	The effect of partial replacement of maltodextrin with vegetable fibres in spray-dried white asparagus powder on its physical and aroma properties. Food Chemistry, 2021, 356, 129567.	4.2	12
11	Metabolomics Reveals Heterogeneity in the Chemical Composition of Green and White Spears of Asparagus (A. officinalis). Metabolites, 2021, 11, 708.	1.3	12
12	Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites, 2020, 10, 17.	1.3	54
13	Metabolomics should be deployed in the identification and characterization of geneâ€edited crops. Plant Journal, 2020, 102, 897-902.	2.8	30
14	Identification of Bioactive Phytochemicals in Mulberries. Metabolites, 2020, 10, 7.	1.3	30
15	Chemical and Sensory Characteristics of Soy Sauce: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 11612-11630.	2.4	104
16	Variation in secondary metabolites in a unique set of tomato accessions collected in Turkey. Food Chemistry, 2020, 317, 126406.	4.2	15
17	Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites, 2020, 10, 121.	1.3	35
18	Comparison of volatile trapping techniques for the comprehensive analysis of food flavourings by Gas Chromatography-Mass Spectrometry. Journal of Chromatography A, 2020, 1624, 461191.	1.8	35

#	Article	IF	CITATIONS
19	The Effect of Calcium Buffering and Calcium Sensor Type on the Sensitivity of an Array-Based Bitter Receptor Screening Assay. Chemical Senses, 2019, 44, 497-505.	1.1	0
20	The Metabolomics Society—Current State of the Membership and Future Directions. Metabolites, 2019, 9, 89.	1.3	2
21	Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics, 2019, 15, 41.	1.4	125
22	Metabolic responses of <i>Eucalyptus</i> species to different temperature regimes. Journal of Integrative Plant Biology, 2018, 60, 397-411.	4.1	34
23	Effect of dietary fiber (inulin) addition on phenolics and in vitro bioaccessibility of tomato sauce. Food Research International, 2018, 106, 129-135.	2.9	52
24	Transcription Factor-Mediated Control of Anthocyanin Biosynthesis in Vegetative Tissues. Plant Physiology, 2018, 176, 1862-1878.	2.3	41
25	Laser Ablation Electrospray Ionization-Mass Spectrometry Imaging (LAESI-MS) for Spatially Resolved Plant Metabolomics. Methods in Molecular Biology, 2018, 1778, 253-267.	0.4	10
26	Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microbial Cell Factories, 2018, 17, 103.	1.9	58
27	Calcium Imaging of GPCR Activation Using Arrays of Reverse Transfected HEK293 Cells in a Microfluidic System. Sensors, 2018, 18, 602.	2.1	2
28	Automated assembly of species metabolomes through data submission into a public repository. GigaScience, 2017, 6, 1-4.	3.3	9
29	Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chemistry, 2017, 220, 51-58.	4.2	66
30	Processing black mulberry into jam: effects on antioxidant potential and <i>in vitro</i> bioaccessibility. Journal of the Science of Food and Agriculture, 2017, 97, 3106-3113.	1.7	43
31	A Multidisciplinary Phenotyping and Genotyping Analysis of a Mapping Population Enables Quality to Be Combined with Yield in Rice. Frontiers in Molecular Biosciences, 2017, 4, 32.	1.6	8
32	The Time Is Right to Focus on Model Organism Metabolomes. Metabolites, 2016, 6, 8.	1.3	63
33	Metabolomics meets functional assays: coupling LC–MS and microfluidic cell-based receptor-ligand analyses. Metabolomics, 2016, 12, 115.	1.4	6
34	Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle. Scientific Reports, 2016, 6, 38990.	1.6	16
35	Multi-platform metabolomics analyses of a broad collection of fragrant and non-fragrant rice varieties reveals the high complexity of grain quality characteristics. Metabolomics, 2016, 12, 38.	1.4	28
36	Improved batch correction in untargeted MS-based metabolomics. Metabolomics, 2016, 12, 88.	1.4	167

#	Article	IF	CITATIONS
37	A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Critical Reviews in Food Science and Nutrition, 2016, 56, S110-S129.	5.4	167
38	Parameter estimation in tree graph metabolic networks. PeerJ, 2016, 4, e2417.	0.9	0
39	Spatially Resolved Plant Metabolomics: Some Potentials and Limitations of Laser-Ablation Electrospray Ionization Mass Spectrometry Metabolite Imaging Â. Plant Physiology, 2015, 169, 1424-1435.	2.3	50
40	The effects of juice processing on black mulberry antioxidants. Food Chemistry, 2015, 186, 277-284.	4.2	60
41	Delving deeper into technological innovations to understand differences in rice quality. Rice, 2015, 8, 43.	1.7	30
42	Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees. Food Chemistry, 2015, 168, 348-355.	4.2	60
43	Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding. PLoS ONE, 2014, 9, e85106.	1.1	229
44	Control of anthocyanin and non-flavonoid compounds by anthocyanin-regulating MYB and bHLH transcription factors in Nicotiana benthamiana leaves. Frontiers in Plant Science, 2014, 5, 519.	1.7	38
45	Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. Journal of Biotechnology, 2014, 192, 383-392.	1.9	110
46	Evidence for a hydrogen-sink mechanism of (+)catechin-mediated emission reduction of the ruminant greenhouse gas methane. Metabolomics, 2014, 10, 179-189.	1.4	45
47	Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. Metabolomics, 2014, 10, 958-974.	1.4	32
48	Metabolite identification: are you sure? And how do your peers gauge your confidence?. Metabolomics, 2014, 10, 350-353.	1.4	205
49	Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry, 2014, 99, 61-72.	1.4	66
50	An <i>Oâ€</i> methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato. Plant Journal, 2014, 80, 695-708.	2.8	37
51	Metabolomics continues to flourish: highlights from the 2014 Metabolomics Society Conference. Metabolomics, 2014, 10, 772-774.	1.4	1
52	2014 Honorary fellows of the Metabolomics Society. Metabolomics, 2014, 10, 537-538.	1.4	0
53	Plant metabolomics is not ripe for environmental risk assessment. Trends in Biotechnology, 2014, 32, 391-392.	4.9	16
54	Investigating the Transport Dynamics of Anthocyanins from Unprocessed Fruit and Processed Fruit Juice from Sour Cherry (<i>Prunus cerasus</i> L.) across Intestinal Epithelial Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 11434-11441.	2.4	36

#	Article	IF	CITATIONS
55	Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics, 2013, 9, 57-77.	1.4	74
56	Metabolomics across the globe. Metabolomics, 2013, 9, 258-264.	1.4	8
57	The Impact of the Product Generation Life Cycle on Knowledge Valorization at the Public Private Research Partnership, the Centre for BioSystems Genomics. Njas - Wageningen Journal of Life Sciences, 2013, 67, 1-10.	7.9	5
58	Changes in polyphenol content during production of grape juice concentrate. Food Chemistry, 2013, 139, 521-526.	4.2	71
59	Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit. Food Research International, 2013, 53, 218-225.	2.9	51
60	Changes in sour cherry (Prunus cerasus L.) antioxidants during nectar processing and in vitro gastrointestinal digestion. Journal of Functional Foods, 2013, 5, 1402-1413.	1.6	56
61	NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit. Plant Cell, 2013, 25, 3067-3078.	3.1	108
62	The Flavonoid Pathway in Tomato Seedlings: Transcript Abundance and the Modeling of Metabolite Dynamics. PLoS ONE, 2013, 8, e68960.	1.1	12
63	Correlation of Rutin Accumulation with 3-O-Glucosyl Transferase and Phenylalanine Ammonia-lyase Activities During the Ripening of Tomato Fruit. Plant Foods for Human Nutrition, 2012, 67, 371-376.	1.4	6
64	A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics, 2012, 8, 771-783.	1.4	43
65	De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11, 155.	1.9	302
66	The potential of rice to offer solutions for malnutrition and chronic diseases. Rice, 2012, 5, 16.	1.7	54
67	MSClust: a tool for unsupervised mass spectra extraction of chromatography-mass spectrometry ion-wise aligned data. Metabolomics, 2012, 8, 714-718.	1.4	193
68	New web forum for Metabolomics Society's interest groups. Metabolomics, 2012, 8, 367-367.	1.4	0
69	Plant Metabolomics and Its Potential for Systems Biology Research. Methods in Enzymology, 2011, 500, 299-336.	0.4	78
70	High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Plant Metabolites in Brassicaceae. Methods in Molecular Biology, 2011, 860, 111-128.	0.4	17
71	Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). Journal of Berry Research, 2011, 1, 137-146.	0.7	34
72	Extensive metabolic crossâ€ŧalk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 2011, 190, 683-696.	3.5	111

#	Article	IF	CITATIONS
73	Metabolomics and the move towards biology. Metabolomics, 2011, 7, 454-456.	1.4	4
74	Use of New Generation Single Nucleotide Polymorphism Genotyping for Rapid Development of Nearâ€Isogenic Lines in Rice. Crop Science, 2011, 51, 2067-2073.	0.8	10
75	Practical Applications of Metabolomics in Plant Biology. Methods in Molecular Biology, 2011, 860, 1-10.	0.4	10
76	Solid Phase Micro-Extraction GC–MS Analysis of Natural Volatile Components in Melon and Rice. Methods in Molecular Biology, 2011, 860, 85-99.	0.4	15
77	Metabolic Pathway Inference from Time Series Data: A Non Iterative Approach. Lecture Notes in Computer Science, 2011, , 97-108.	1.0	3
78	The Effect of Industrial Food Processing on Potentially Health-Beneficial Tomato Antioxidants. Critical Reviews in Food Science and Nutrition, 2010, 50, 919-930.	5.4	96
79	Plant molecular stress responses face climate change. Trends in Plant Science, 2010, 15, 664-674.	4.3	832
80	Characterization of Rhamnosidases from <i>Lactobacillus plantarum</i> and <i>Lactobacillus acidophilus</i> . Applied and Environmental Microbiology, 2009, 75, 3447-3454.	1.4	81
81	A Role for Differential Glycoconjugation in the Emission of Phenylpropanoid Volatiles from Tomato Fruit Discovered Using a Metabolic Data Fusion Approach. Plant Physiology, 2009, 152, 55-70.	2.3	86
82	Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index. Bioinformatics, 2009, 25, 787-794.	1.8	37
83	Not just a grain of rice: the quest for quality. Trends in Plant Science, 2009, 14, 133-139.	4.3	643
84	Plant metabolomics and its potential application for human nutrition. Physiologia Plantarum, 2008, 132, 162-175.	2.6	169
85	Accurate mass error correction in liquid chromatography time-of-flight mass spectrometry based metabolomics. Metabolomics, 2008, 4, 171-182.	1.4	37
86	Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 2008, 26, 1301-1308.	9.4	1,030
87	Changes in Antioxidant and Metabolite Profiles during Production of Tomato Paste. Journal of Agricultural and Food Chemistry, 2008, 56, 964-973.	2.4	287
88	Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit. BioFactors, 2008, 34, 57-66.	2.6	22
89	Sucrose prevents up-regulation of senescence-associated genes in carnation petals. Journal of Experimental Botany, 2007, 58, 2873-2885.	2.4	120
90	Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany, 2007, 58, 4131-4146.	2.4	189

#	Article	IF	CITATIONS
91	Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2007, 2, 778-791.	5.5	803
92	Microbial production of natural raspberry ketone. Biotechnology Journal, 2007, 2, 1270-1279.	1.8	81
93	Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics, 2007, 3, 399-412.	1.4	176
94	Metabolomic Profiling of Natural Volatiles. Methods in Molecular Biology, 2007, 358, 39-53.	0.4	14
95	Plant Metabolomics Strategies Based upon Quadrupole Time of Flight Mass Spectrometry (QTOF-MS). , 2006, , 33-48.		16
96	Production of Resveratrol in Recombinant Microorganisms. Applied and Environmental Microbiology, 2006, 72, 5670-5672.	1.4	180
97	Transgenic Flavonoid Tomato Intake Reduces C-Reactive Protein in Human C-Reactive Protein Transgenic Mice More Than Wild-Type Tomato. Journal of Nutrition, 2006, 136, 2331-2337.	1.3	58
98	Alignment and statistical difference analysis of complex peptide data sets generated by multidimensional LC-MS. Proteomics, 2006, 6, 641-653.	1.3	81
99	The genetics of plant metabolism. Nature Genetics, 2006, 38, 842-849.	9.4	454
100	Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytologist, 2006, 169, 453-468.	3.5	430
101	Preprocessing and exploratory analysis of chromatographic profiles of plant extracts. Analytica Chimica Acta, 2005, 545, 53-64.	2.6	75
102	Identification and dietary relevance of antioxidants from raspberry. BioFactors, 2005, 23, 197-205.	2.6	94
103	The lightâ€hyperresponsive high pigmentâ€2 dg mutation of tomato: alterations in the fruit metabolome. New Phytologist, 2005, 166, 427-438.	3.5	207
104	Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnology Journal, 2005, 3, 505-519.	4.1	86
105	A non-directed approach to the differential analysis of multiple LC–MS-derived metabolic profiles. Metabolomics, 2005, 1, 169-180.	1.4	73
106	A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 2005, 139, 1125-1137.	2.3	471
107	Metabolomics for the Assessment of Functional Diversity and Quality Traits in Plants. , 2005, , 31-44.		5
108	Antioxidants in Raspberry:  On-Line Analysis Links Antioxidant Activity to a Diversity of Individual Metabolites. Journal of Agricultural and Food Chemistry, 2005, 53, 3313-3320.	2.4	173

#	Article	IF	CITATIONS
109	Towards prevention of allergy through an integrated multidisciplinary approach. Njas - Wageningen Journal of Life Sciences, 2005, 53, 35-47.	7.9	2
110	A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology, 2004, 22, 1601-1606.	9.4	283
111	Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 2004, 9, 418-425.	4.3	685
112	Gene expression during anthesis and senescence in Iris flowers. Plant Molecular Biology, 2003, 53, 845-863.	2.0	123
113	Factors influencing cDNA microarray hybridization on silylated glass slides. Analytical Biochemistry, 2002, 308, 5-17.	1.1	32
114	Genetic Engineering of Beet and the Concept of the Plant as a Factory. , 2002, , .		0
115	Plant Cell Culture Initiation: Practical Tips. Molecular Biotechnology, 2000, 16, 161-174.	1.3	10
116	High level fructan accumulation in a transgenic sugar beet. Nature Biotechnology, 1998, 16, 843-846.	9.4	127
117	The use of an automated cell tracking system to identify specific cell types competent for regeneration and transformation. In Vitro Cellular and Developmental Biology - Plant, 1998, 34, 81-86.	0.9	8
118	Biotechnological applications for stomatal guard cells. Journal of Experimental Botany, 1998, 49, 369-375.	2.4	1
119	Sugar beet guard cell protoplasts demonstrate a remarkable capacity for cell division enabling applications in stomatal physiology and molecular breeding. Journal of Experimental Botany, 1997, 48, 255-263.	2.4	20
120	The effect of exogenously-applied phytohormones on gene transfer efficiency in sugarbeet (Beta) Tj ETQq0 0 0 r	gBT_/Over 1.7	lock 10 Tf 50
121	Stomatal Guard Cells Are Totipotent. Plant Physiology, 1996, 112, 889-892.	2.3	23
122	A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells. Nature Biotechnology, 1996, 14, 1133-1138.	9.4	81
123	Computer-Assisted Identification of Protoplasts Responsible for Rare Division Events Reveals Guard-Cell Totipotency. Plant Physiology, 1995, 107, 1379-1386.	2.3	33
124	The effect ofn-propyl gallate on the formation of ethylene during protoplast isolation in sugarbeet (Beta vulgarisL.). Journal of Experimental Botany, 1994, 45, 1899-1901.	2.4	5
125	Improvement of protoplast culture protocols for Beta vulgaris L. (sugar beet). Plant Cell Reports, 1993, 12, 339-42.	2.8	21
126	Petioles as the tissue source for isolation and culture of Beta vulgaris and B. maritima protoplasts. Plant Science, 1993, 95, 89-97.	1.7	12

#	Article	IF	CITATIONS
127	Effect of gamma-irradiation on protoplast viability and chloroplast DNA damage in Lycopersicon peruvianum with respect to donor-recipient protoplast fusion. Environmental and Experimental Botany, 1992, 32, 255-264.	2.0	6
128	Asymmetric protoplast fusion aimed at intraspecific transfer of cytoplasmic male sterility (CMS) in Lolium perenne L Theoretical and Applied Genetics, 1992, 84-84, 763-770.	1.8	22
129	Asymmetric somatic cell hybridization in plants. Molecular Genetics and Genomics, 1992, 234, 306-314.	2.4	26
130	Asymmetric somatic cell hybridization in plants. Molecular Genetics and Genomics, 1992, 234, 315-324.	2.4	30
131	High yields of cytoplasts from protoplasts of Lolium perenne and Beta vulgaris using gradient centrifugation. Plant Cell, Tissue and Organ Culture, 1992, 31, 223-232.	1.2	11
132	DNA radiation damage and asymmetric somatic hybridization: Is UV a potential substitute or supplement to ionising radiation in fusion experiments?. Physiologia Plantarum, 1992, 85, 319-324.	2.6	16
133	The influence of intracellular pools of phenylalanine derivatives upon the synthesis of capsaicin by immobilized cell cultures of the chilli pepper, Capsicum frutescens. Planta, 1991, 185, 72-80.	1.6	24
134	The initiation and maintenance of callus cultures of carrot and tobacco. , 1991, , 25-43.		3
135	Transfer of cytoplasm from newBeta CMS sources to sugar beet by asymmetric fusion. Theoretical and Applied Genetics, 1990, 79, 390-396.	1.8	54
136	Developments in plant protoplast research. Trends in Biotechnology, 1988, 6, 110-112.	4.9	2
137	Limitations to product yield in rapidly growing cultures of <i>Capsicum frutescens</i> . Biochemical Society Transactions, 1988, 16, 66-67.	1.6	6
138	Intercellular and Intercultural Heterogeneity in Secondary Metabolite Accumulation in Cultures ofCatharanthus roseusfollowing Cell Line Selection. Journal of Experimental Botany, 1987, 38, 1391-1398.	2.4	51
139	The accumulation of phenylpropanoid and capsaicinoid compounds in cell cultures and whole fruit of the chilli pepper, Capsicum frutescens Mill. Plant Cell, Tissue and Organ Culture, 1987, 8, 163-176.	1.2	35
140	FACTORS DETERMINING ANTHOCYANIN YIELD IN CELL CULTURES OF CATHARANTHUSROSEUS (L.)G. DON New Phytologist, 1986, 103, 33-43.	3.5	38
141	Temporal and Spatial Heterogeneity in the Accumulation of Anthocyanins in Cell Cultures of Catharanthus roseus(L.) G.Don Journal of Experimental Botany, 1986, 37, 48-60.	2.4	48

142 Metabolomic Profiling of Natural Volatiles: Headspace Trapping: GC-MS. , 0, , 39-54.