Marc M Greenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5165533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repair of Formamidopyrimidines in DNA Involves Different Glycosylases. Journal of Biological Chemistry, 2005, 280, 40544-40551.	3.4	174
2	Rapid DNA–protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22475-22480.	7.1	170
3	Mechanistic studies on DNA damage by minor groove binding copper-phenanthroline conjugates. Nucleic Acids Research, 2005, 33, 5371-5379.	14.5	137
4	Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells. Nucleic Acids Research, 2006, 34, 2305-2315.	14.5	128
5	Covalent Trapping of Human DNA Polymerase β by the Oxidative DNA Lesion 2-Deoxyribonolactone. Journal of Biological Chemistry, 2002, 277, 7637-7640.	3.4	114
6	Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radical Research, 2012, 46, 367-381.	3.3	114
7	Synthesis and Characterization of Oligodeoxynucleotides Containing Formamidopyrimidine Lesions and Nonhydrolyzable Analogues. Journal of the American Chemical Society, 2002, 124, 3263-3269.	13.7	103
8	Efficient DNA Interstrand Cross-Link Formation from a Nucleotide Radical. Journal of the American Chemical Society, 2005, 127, 3692-3693.	13.7	103
9	Oxygen Independent DNA Interstrand Cross-Link Formation by a Nucleotide Radical. Journal of the American Chemical Society, 2006, 128, 485-491.	13.7	97
10	5-Formylcytosine Yields DNA–Protein Cross-Links in Nucleosome Core Particles. Journal of the American Chemical Society, 2017, 139, 10617-10620.	13.7	95
11	The 2-Deoxyribonolactone Lesion Produced in DNA by Neocarzinostatin and Other Damaging Agents Forms Cross-links with the Base-Excision Repair Enzyme Endonuclease III. Journal of the American Chemical Society, 2001, 123, 3161-3162.	13.7	93
12	Fapy·dG Instructs Klenow Exo- to Misincorporate Deoxyadenosine. Journal of the American Chemical Society, 2002, 124, 7278-7279.	13.7	93
13	DNA Interstrand Cross-Link Formation Initiated by Reaction between Singlet Oxygen and a Modified Nucleotide. Journal of the American Chemical Society, 2005, 127, 10510-10511.	13.7	92
14	A Novel Mechanism for the Formation of Direct Strand Breaks upon Anaerobic Photolysis of Duplex DNA Containing 5-Bromodeoxyuridine. Journal of the American Chemical Society, 1996, 118, 10025-10030.	13.7	89
15	Thiol Specific and Tracelessly Removable Bioconjugation via Michael Addition to 5-Methylene Pyrrolones. Journal of the American Chemical Society, 2017, 139, 6146-6151.	13.7	88
16	A Minor Groove Binding Copper-Phenanthroline Conjugate Produces Direct Strand Breaks via β-Elimination of 2-Deoxyribonolactone. Journal of the American Chemical Society, 2002, 124, 9062-9063.	13.7	86
17	Investigation of the Origin of the Sequence Selectivity for the 5-Halo-2â€~-deoxyuridine Sensitization of DNA to Damage by UV-Irradiation. Journal of the American Chemical Society, 2000, 122, 3861-3866.	13.7	82
18	Abasic and Oxidized Abasic Site Reactivity in DNA: Enzyme Inhibition, Cross-Linking, and Nucleosome Catalyzed Reactions. Accounts of Chemical Research, 2014, 47, 646-655.	15.6	82

#	Article	IF	CITATIONS
19	DNA damage induced via independent generation of the radical resulting from formal hydrogen atom abstraction from the C1′-position of a nucleotide. Chemistry and Biology, 1998, 5, 263-271.	6.0	81
20	Characterization and Mechanism of Formation of Tandem Lesions in DNA by a Nucleobase Peroxyl Radical. Journal of the American Chemical Society, 2007, 129, 4089-4098.	13.7	81
21	Self-Promoted DNA Interstrand Cross-Link Formation by an Abasic Site. Journal of the American Chemical Society, 2008, 130, 9646-9647.	13.7	79
22	The Formamidopyrimidines: Purine Lesions Formed in Competition With 8-Oxopurines From Oxidative Stress. Accounts of Chemical Research, 2012, 45, 588-597.	15.6	77
23	DNA Damage Induced via 5,6-Dihydrothymid-5-yl in Single-Stranded Oligonucleotides. Journal of the American Chemical Society, 1997, 119, 1828-1839.	13.7	75
24	Direct Evidence for Bimodal DNA Damage Induced by Tirapazamine. Chemical Research in Toxicology, 1998, 11, 1254-1257.	3.3	75
25	Elucidating DNA damage and repair processes by independently generating reactive and metastable intermediates. Organic and Biomolecular Chemistry, 2007, 5, 18-30.	2.8	75
26	Interstrand Cross-Link Formation in Duplex and Triplex DNA by Modified Pyrimidines. Journal of the American Chemical Society, 2008, 130, 10299-10306.	13.7	74
27	Mechanistic Studies on Histone Catalyzed Cleavage of Apyrimidinic/Apurinic Sites in Nucleosome Core Particles. Journal of the American Chemical Society, 2012, 134, 16734-16741.	13.7	70
28	Synthesis of Oligonucleotides Containing Fapy·dG (N6- (2-Deoxy-α,β-d-erythro-pentofuranosyl)-2,6-) Tj ETQqQ 8636-8637.) 0 0 rgBT / 13.7	Overlock 10 67
29	Tandem Lesions Are the Major Products Resulting from a Pyrimidine Nucleobase Radical. Journal of the American Chemical Society, 2003, 125, 13376-13378.	13.7	66
30	Cross-Linking of 2-Deoxyribonolactone and Its β-Elimination Product by Base Excision Repair Enzymes. Biochemistry, 2003, 42, 2449-2455.	2.5	66
31	The Ring Fragmentation Product of Thymidine C5-Hydrate When Present in DNA Is Repaired by theEscherichia coliFpg and Nth Proteinsâ€. Biochemistry, 1998, 37, 7757-7763.	2.5	65
32	Investigating Nucleic Acid Damage Processes via Independent Generation of Reactive Intermediatesâ€. Chemical Research in Toxicology, 1998, 11, 1235-1248.	3.3	65
33	Reaction of the Hypoxia-Selective Antitumor Agent Tirapazamine with a C1â€~-Radical in Single-Stranded and Double-Stranded DNA:Â The Drug and Its Metabolites Can Serve as Surrogates for Molecular Oxygen in Radical-Mediated DNA Damage Reactionsâ€. Biochemistry, 1999, 38, 14248-14255.	2.5	64
34	Improved Utility of Photolabile Solid Phase Synthesis Supports for the Synthesis of Oligonucleotides Containing 3â€~-Hydroxyl Termini. Journal of Organic Chemistry, 1996, 61, 525-529.	3.2	62
35	Model Studies Indicate That Copper Phenanthroline Induces Direct Strand Breaks via β-Elimination of the 2â€~Deoxyribonolactone Intermediate Observed in Enediyne Mediated DNA Damage. Journal of the American Chemical Society, 1998, 120, 3815-3816.	13.7	61
36	Scope and Mechanism of Interstrand Cross-Link Formation by the C4′-Oxidized Abasic Site. Journal of the American Chemical Society, 2009, 131, 11132-11139.	13.7	60

#	Article	IF	CITATIONS
37	Quantification of 8-OxodGuo Lesions in Double-Stranded DNA Using a Photoelectrochemical DNA Sensor. Analytical Chemistry, 2012, 84, 6048-6053.	6.5	59
38	Independent Generation and Reactivity of 2'-Deoxyurid-1'-yl. Journal of Organic Chemistry, 1996, 61, 2-3.	3.2	58
39	Release of Superoxide from Nucleoside Peroxyl Radicals, a Double-Edged Sword?. Journal of the American Chemical Society, 1998, 120, 4903-4909.	13.7	56
40	Efficient Removal of Formamidopyrimidines by 8-Oxoguanine Glycosylases. Biochemistry, 2008, 47, 1043-1050.	2.5	55
41	Fapyâ‹dA Induces Nucleotide Misincorporation Translesionally by a DNA Polymerase We are grateful for support of this research by the National Institutes of Health (CA-74954) Angewandte Chemie - International Edition, 2002, 41, 771.	13.8	54
42	Repair of DNA Containing Fapy·dG and Its β-C-Nucleoside Analogue by Formamidopyrimidine DNA Glycosylase and MutYâ€. Biochemistry, 2003, 42, 9755-9760.	2.5	54
43	DNA Strand Damage Product Analysis Provides Evidence That the Tumor Cell-Specific Cytotoxin Tirapazamine Produces Hydroxyl Radical and Acts as a Surrogate for O ₂ . Journal of the American Chemical Society, 2007, 129, 12870-12877.	13.7	54
44	Mutagenic Effects of 2-Deoxyribonolactone inEscherichia coli. An Abasic Lesion That Disobeys the A-Ruleâ€. Biochemistry, 2004, 43, 6723-6733.	2.5	53
45	Nucleosome Core Particle-Catalyzed Strand Scission at Abasic Sites. Biochemistry, 2013, 52, 2157-2164.	2.5	52
46	Direct Strand Scission from a Nucleobase Radical in RNA. Journal of the American Chemical Society, 2010, 132, 3668-3669.	13.7	51
47	Studies on N4-(2-Deoxy-d-pentofuranosyl)-4,6-diamino-5-formamidopyrimidine (Fapy•dA) and N6-(2-Deoxy-d-pentofuranosyl)- 6-diamino-5-formamido-4-hydroxypyrimidine (Fapy•dG). Biochemistry, 2001, 40, 15856-15861.	2.5	50
48	Action of human apurinic endonuclease (Ape1) on C1′-oxidized deoxyribose damage in DNA. DNA Repair, 2003, 2, 175-185.	2.8	50
49	Double-Strand Break Formation during Nucleotide Excision Repair of a DNA Interstrand Cross-Link. Biochemistry, 2009, 48, 7565-7567.	2.5	49
50	Introducing Structural Diversity in Oligonucleotides via Photolabile, Convertible C5-Substituted Nucleotides. Journal of the American Chemical Society, 1999, 121, 597-604.	13.7	48
51	Studies on the Replication of the Ring Opened Formamidopyrimidine, Fapy·dG in Escherichia coli. Biochemistry, 2007, 46, 10202-10212.	2.5	47
52	Histone Modification via Rapid Cleavage of C4′-Oxidized Abasic Sites in Nucleosome Core Particles. Journal of the American Chemical Society, 2013, 135, 5274-5277.	13.7	45
53	Histone tails decrease N7-methyl-2′-deoxyguanosine depurination and yield DNA–protein cross-links in nucleosome core particles and cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11212-E11220.	7.1	45
54	Identifying Poly(ADP-ribose)-Binding Proteins with Photoaffinity-Based Proteomics. Journal of the American Chemical Society, 2021, 143, 3037-3042.	13.7	44

#	Article	IF	CITATIONS
55	Facile Quantification of Lesions Derived from 2â€~-Deoxyguanosine in DNA. Journal of the American Chemical Society, 2007, 129, 7010-7011.	13.7	43
56	DNA Tandem Lesion Repair by Strand Displacement Synthesis and Nucleotide Excision Repair. Biochemistry, 2008, 47, 4306-4316.	2.5	43
57	Irreversible Inhibition of DNA Polymerase \hat{l}^2 by an Oxidized Abasic Lesion. Journal of the American Chemical Society, 2010, 132, 5004-5005.	13.7	43
58	Selective Detection of 2-Deoxyribonolactone in DNA. Journal of the American Chemical Society, 2005, 127, 2806-2807.	13.7	42
59	DNA Interstrand Cross-Link Formation by the 1,4-Dioxobutane Abasic Lesion. Journal of the American Chemical Society, 2009, 131, 15225-15231.	13.7	42
60	Kinetics and Stereoselectivity of Thiol Trapping of Deoxyuridin-1â€~-yl in Biopolymers and Their Relationship to the Formation of Premutagenic α-Deoxynucleotides. Journal of the American Chemical Society, 1999, 121, 4311-4315.	13.7	41
61	Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae. Nucleic Acids Research, 2005, 33, 6196-6202.	14.5	41
62	Intracellular Detection of Cytosine Incorporation in Genomic DNA by Using 5â€Ethynylâ€2′â€Deoxycytidine. ChemBioChem, 2011, 12, 2184-2190.	2.6	41
63	Postsynthetic Conjugation of Protected Oligonucleotides Containing 3â€~-Alkylamines. Journal of the American Chemical Society, 1998, 120, 3289-3294.	13.7	40
64	Histone-Catalyzed Cleavage of Nucleosomal DNA Containing 2-Deoxyribonolactone. Journal of the American Chemical Society, 2012, 134, 8090-8093.	13.7	40
65	Synthesis and Characterization of Oligonucleotides Containing the C4′-Oxidized Abasic Site Produced by Bleomycin and Other DNA Damaging Agents. Angewandte Chemie - International Edition, 2003, 42, 5882-5885.	13.8	38
66	Repair of Oxidized Abasic Sites by Exonuclease III, Endonuclease IV, and Endonuclease III. Biochemistry, 2004, 43, 8178-8183.	2.5	37
67	Preparation and Analysis of Oligonucleotides Containing Lesions Resulting from C5â€~-Oxidation. Journal of Organic Chemistry, 2005, 70, 9916-9924.	3.2	37
68	EC-tagging allows cell type-specific RNA analysis. Nucleic Acids Research, 2017, 45, e138-e138.	14.5	37
69	A comprehensive comparison of DNA replication past 2-deoxyribose and its tetrahydrofuran analog in Escherichia coli. Nucleic Acids Research, 2004, 32, 5480-5485.	14.5	36
70	Radiosensitization by a Modified Nucleotide that Produces DNA Interstrand Cross-Links under Hypoxic Conditions. Journal of the American Chemical Society, 2006, 128, 2230-2231.	13.7	36
71	Facile SNP detection using bifunctional, cross-linking oligonucleotide probes. Nucleic Acids Research, 2008, 36, e31.	14.5	36
72	Diastereoselective synthesis of hydroxylated dihydrothymidines resulting from oxidative stress. Journal of Organic Chemistry, 1993, 58, 6151-6154.	3.2	35

#	Article	IF	CITATIONS
73	Observation and elimination of N-acetylation of oligonucleotides prepared using fast-deprotecting phosphoramidites and ultra-mild deprotection. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1105-1107.	2.2	35
74	Mild Generation of 5-(2â€~-Deoxyuridinyl)methyl Radical from a Phenyl Selenide Precursor. Organic Letters, 2004, 6, 5011-5013.	4.6	35
75	Use of Fluorescence Sensors To Determine that 2-Deoxyribonolactone Is the Major Alkali-Labile Deoxyribose Lesion Produced in Oxidatively Damaged DNA. Angewandte Chemie - International Edition, 2007, 46, 561-564.	13.8	35
76	Multinuclear NMR and Kinetic Analysis of DNA Interstrand Cross-Link Formation. Journal of the American Chemical Society, 2008, 130, 17981-17987.	13.7	35
77	Nucleotide Excision Repair of a DNA Interstrand Cross-Link Produces Single- and Double-Strand Breaks. Biochemistry, 2010, 49, 11-19.	2.5	35
78	Oxygen-Dependent DNA Damage Amplification Involving 5,6-Dihydrothymidin-5-yl in a Structurally Minimal System. Journal of the American Chemical Society, 2001, 123, 5181-5187.	13.7	33
79	The effects of secondary structure and O2 on the formation of direct strand breaks upon UV irradiation of 5-bromodeoxy-uridine-containing oligonucleotides. Chemistry and Biology, 1999, 6, 451-459.	6.0	32
80	Synthesis of Oligonucleotides Containing Fapy·dG (N6-(2-Deoxy-α,l²-d-erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine) Using a 5â€~-Dimethoxytrityl Dinucleotide Phosphoramidite. Journal of Organic Chemistry, 2005, 70, 141-149.	3.2	32
81	Product and Mechanistic Analysis of the Reactivity of a C6-Pyrimidine Radical in RNA. Journal of the American Chemical Society, 2011, 133, 5152-5159.	13.7	32
82	Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase. Biochemistry, 2016, 55, 6205-6208.	2.5	32
83	Probing the Configurations of Formamidopyrimidine Lesions Fapy·dA and Fapy·dG in DNA Using Endonuclease IVâ€. Biochemistry, 2004, 43, 13397-13403.	2.5	30
84	Independent Generation and Characterization of a C2â€~-Oxidized Abasic Site in Chemically Synthesized Oligonucleotides. Journal of Organic Chemistry, 2004, 69, 6100-6104.	3.2	30
85	Long Patch Base Excision Repair Compensates for DNA Polymerase β Inactivation by the C4′-Oxidized Abasic Site. Biochemistry, 2011, 50, 136-143.	2.5	30
86	Reactivity of 5,6-Dihydro-5-hydroxythymid-6-yl Generated via Photoinduced Single Electron Transfer and the Role of Cyclohexa-1,4-diene in the Photodeoxygenation Process. Journal of the American Chemical Society, 1995, 117, 4894-4904.	13.7	29
87	Independent Generation of 5,6-Dihydrothymid-5-yl in Single-Stranded Polythymidylate. O2 Is Necessary for Strand Scission. Journal of the American Chemical Society, 1995, 117, 8291-8292.	13.7	29
88	Effects of the C4â€~-Oxidized Abasic Site on Replication inEscherichia coli. An Unusually Large Deletion Is Induced by a Small Lesionâ€. Biochemistry, 2004, 43, 13621-13627.	2.5	29
89	Evidence for Glycosidic Bond Rotation in a Nucleobase Peroxyl Radical and Its Effect on Tandem Lesion Formation. Journal of Organic Chemistry, 2004, 69, 6974-6978.	3.2	29
90	Inhibition of Short Patch and Long Patch Base Excision Repair by an Oxidized Abasic Site. Biochemistry, 2010, 49, 9904-9910.	2.5	29

#	Article	IF	CITATIONS
91	Synthesis of 2â€~-Modified Oligodeoxynucleotides via On-Column Conjugation. Journal of Organic Chemistry, 2001, 66, 363-369.	3.2	28
92	Selective Detection and Quantification of Oxidized Abasic Lesions in DNA. Journal of the American Chemical Society, 2007, 129, 8702-8703.	13.7	28
93	5,6-Dihydropyrimidine Peroxyl Radical Reactivity in DNA. Journal of the American Chemical Society, 2014, 136, 3928-3936.	13.7	28
94	Unlike Catalyzing Error-Free Bypass of 8-OxodGuo, DNA Polymerase λ Is Responsible for a Significant Part of Fapy·dG-Induced G → T Mutations in Human Cells. Biochemistry, 2015, 54, 1859-1862.	2.5	28
95	Independent Generation and Reactivity of 2â€~-Deoxy-5-methyleneuridin-5-yl, a Significant Reactive Intermediate Produced from Thymidine as a Result of Oxidative Stress. Journal of Organic Chemistry, 2000, 65, 4648-4654.	3.2	27
96	Independent Generation and Study of 5,6-Dihydro-2â€~-deoxyuridin-6-yl, a Member of the Major Family of Reactive Intermediates Formed in DNA from the Effects of γ-Radiolysis. Journal of Organic Chemistry, 2003, 68, 4275-4280.	3.2	27
97	Hole Migration is the Major Pathway Involved in Alkali-Labile Lesion Formation in DNA by the Direct Effect of Ionizing Radiation. Journal of the American Chemical Society, 2007, 129, 772-773.	13.7	27
98	Lightâ€Triggered RNA Annealing by an RNA Chaperone. Angewandte Chemie - International Edition, 2015, 54, 7281-7284.	13.8	27
99	Inhibition of Klenow Fragment (exo-) Catalyzed DNA Polymerization by (5R)-5,6-Dihydro-5-hydroxythymidine and Structural Analogue 5,6-Dihydro-5-methylthymidineâ€. Biochemistry, 1997, 36, 14071-14079.	2.5	25
100	Direct Strand Scission in Double Stranded RNA via a C5-Pyrimidine Radical. Journal of the American Chemical Society, 2012, 134, 3917-3924.	13.7	25
101	Oxidation of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Leads to Substantial DNA-Histone Cross-Links within Nucleosome Core Particles. Chemical Research in Toxicology, 2018, 31, 1364-1372.	3.3	25
102	Independent Generation of 5,6-Dihydrothymid-5-yl and Investigation of Its Ability To Effect Nucleic Acid Strand Scission via Hydrogen Atom Abstraction. Journal of Organic Chemistry, 1995, 60, 1916-1917.	3.2	23
103	In Vitro Replication and Repair of DNA Containing a C2â€~-Oxidized Abasic Siteâ€. Biochemistry, 2004, 43, 15217-15222.	2.5	23
104	Deconvoluting the Reactivity of Two Intermediates Formed from Modified Pyrimidines. Organic Letters, 2013, 15, 3618-3621.	4.6	23
105	Irreversible Inhibition of DNA Polymerase β by Small-Molecule Mimics of a DNA Lesion. Journal of the American Chemical Society, 2014, 136, 3176-3183.	13.7	23
106	DNA Damage by Histone Radicals in Nucleosome Core Particles. Journal of the American Chemical Society, 2014, 136, 6562-6565.	13.7	23
107	Probing Interactions between Lysine Residues in Histone Tails and Nucleosomal DNA via Product and Kinetic Analysis. ACS Chemical Biology, 2015, 10, 622-630.	3.4	23
108	Interaction of DNA Containing Fapy·dA or Its C-Nucleoside Analogues with Base Excision Repair Enzymes. Implications for Mutagenesis and Enzyme Inhibitionâ€. Biochemistry, 2002, 41, 15838-15844.	2.5	22

#	Article	IF	CITATIONS
109	Synthesis, DNA Polymerase Incorporation, and Enzymatic Phosphate Hydrolysis of Formamidopyrimidine Nucleoside Triphosphates. Journal of the American Chemical Society, 2006, 128, 14606-14611.	13.7	22
110	Synthesis and Analysis of Oligonucleotides Containing Abasic Site Analogues. Journal of Organic Chemistry, 2008, 73, 2695-2703.	3.2	22
111	DNA Double Strand Cleavage via Interstrand Hydrogen Atom Abstraction. Journal of the American Chemical Society, 2013, 135, 16368-16371.	13.7	22
112	High-Yielding Method for On-Column Derivatization of Protected Oligodeoxy- nucleotides and Its Application to the Convergent Synthesis of 5â€~,3â€~-Bis-conjugates. Journal of Organic Chemistry, 1998, 63, 4870-4871.	3.2	21
113	Protein Binding Has a Large Effect on Radical Mediated DNA Damage. Journal of the American Chemical Society, 2008, 130, 12890-12891.	13.7	21
114	Photochemical Control of RNA Structure by Disrupting π-Stacking. Journal of the American Chemical Society, 2012, 134, 12478-12481.	13.7	21
115	Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2â€ ² -deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 2014. 762. 32-39.	1.0	21
116	Aminyl Radical Generation via Tandem Norrish Type I Photocleavage, β-Fragmentation: Independent Generation and Reactivity of the 2′-Deoxyadenosin- <i>N</i> 6-yl Radical. Journal of Organic Chemistry, 2017, 82, 3571-3580.	3.2	21
117	Synthesis of Modified Oligodeoxyribonucleotides on a Solid-Phase Support via Derivatization of a Selectively Revealed 2'-Amino-2'-deoxyuridine. Organic Letters, 1999, 1, 2021-2024.	4.6	20
118	Preparation and Analysis of Oligonucleotides Containing the C4â€~-Oxidized Abasic Site and Related Mechanistic Probes. Journal of Organic Chemistry, 2005, 70, 8122-8129.	3.2	20
119	Reactivity of Nucleic Acid Radicals. Advances in Physical Organic Chemistry, 2016, 50, 119-202.	0.5	20
120	Excision of formamidopyrimidine lesions by endonucleases III and VIII is not a major DNA repair pathway in Escherichia coli. Nucleic Acids Research, 2005, 33, 3331-3338.	14.5	19
121	DNA Damage Emanating From a Neutral Purine Radical Reveals the Sequence Dependent Convergence of the Direct and Indirect Effects of γ-Radiolysis. Journal of the American Chemical Society, 2017, 139, 17751-17754.	13.7	19
122	Traceless Tandem Lesion Formation in DNA from a Nitrogen-Centered Purine Radical. Journal of the American Chemical Society, 2018, 140, 6400-6407.	13.7	19
123	Optimization and Mechanistic Analysis of Oligonucleotide Cleavage from Palladium-Labile Solid-Phase Synthesis Supports1. Journal of Organic Chemistry, 1998, 63, 4062-4068.	3.2	18
124	Replication of an Oxidized Abasic Site in Escherichia coli by a dNTP-Stabilized Misalignment Mechanism that Reads Upstream and Downstream Nucleotides. Biochemistry, 2006, 45, 5048-5056.	2.5	18
125	Photochemical Generation and Reactivity of the 5,6-Dihydrouridin-6-yl Radical. Journal of Organic Chemistry, 2009, 74, 7007-7012.	3.2	18
126	Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles. Journal of the American Chemical Society, 2015, 137, 11022-11031.	13.7	18

#	Article	IF	CITATIONS
127	Synthesis of Oligonucleotides and Thermal Stability of Duplexes Containing the β-C-Nucleoside Analogue of Fapy·dG. Chemical Research in Toxicology, 2002, 15, 1460-1465.	3.3	17
128	The effect of the 2-amino group of 7,8-dihydro-8-oxo-2'-deoxyguanosine on translesion synthesis and duplex stability. Nucleic Acids Research, 2005, 33, 1637-1643.	14.5	17
129	The Mutagenicity of Thymidine Glycol in Escherichia coli Is Increased When It Is Part of a Tandem Lesion. Biochemistry, 2009, 48, 7833-7841.	2.5	17
130	Probing DNA interstrand cross-link formation by an oxidized abasic site using nonnative nucleotides. Bioorganic and Medicinal Chemistry, 2011, 19, 5788-5793.	3.0	17
131	DNA Polymerase λ Inactivation by Oxidized Abasic Sites. Biochemistry, 2013, 52, 975-983.	2.5	17
132	Rotational Effects within Nucleosome Core Particles on Abasic Site Reactivity. Biochemistry, 2018, 57, 3945-3952.	2.5	17
133	Independent generation of the major adduct of hydroxyl radical and thymidine. Examination of intramolecular hydrogen atom transfer in competition with thiol trapping Tetrahedron Letters, 1992, 33, 6057-6060.	1.4	16
134	Solution-Phase Bioconjugate Synthesis Using Protected Oligonucleotides Containing 3â€~-Alkyl Carboxylic Acids. Journal of Organic Chemistry, 1999, 64, 507-510.	3.2	15
135	Quantitative Detection of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Using Chemical Tagging and qPCR. Chemical Research in Toxicology, 2014, 27, 1227-1235.	3.3	15
136	DNA–Protein Cross-Link Formation in Nucleosome Core Particles Treated with Methyl Methanesulfonate. Chemical Research in Toxicology, 2019, 32, 2144-2151.	3.3	15
137	Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12080-12086.	7.1	15
138	AlkA Protein Is the Third Escherichia coli DNA Repair Protein Excising a Ring Fragmentation Product of Thymine. Biochemistry, 2000, 39, 14263-14268.	2.5	15
139	Synthesis of Oligonucleotides Containing 3â€~-Alkylcarboxylic Acids Using a Palladium Labile Oligonucleotide Solid Phase Synthesis Support. Bioconjugate Chemistry, 1997, 8, 99-102.	3.6	14
140	Hydrogen Bonding Contributes to the Selectivity of Nucleotide Incorporation Opposite an Oxidized Abasic Lesion. Journal of the American Chemical Society, 2008, 130, 6080-6081.	13.7	14
141	Synthesis of Cross-Linked DNA Containing Oxidized Abasic Site Analogues. Journal of Organic Chemistry, 2014, 79, 5948-5957.	3.2	14
142	Looking beneath the surface to determine what makes DNA damage deleterious. Current Opinion in Chemical Biology, 2014, 21, 48-55.	6.1	14
143	Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles. Biochemistry, 2017, 56, 14-21.	2.5	14
144	Independent Generation of Reactive Intermediates Leads to an Alternative Mechanism for Strand Damage Induced by Hole Transfer in Poly(dA–T) Sequences. Journal of the American Chemical Society, 2018, 140, 11308-11316.	13.7	14

#	Article	IF	CITATIONS
145	In Vitro Effects of a C4â€~-Oxidized Abasic Site on DNA Polymerasesâ€. Biochemistry, 2004, 43, 2656-2663.	2.5	13
146	Competitive Inhibition of Uracil DNA Glycosylase by a Modified Nucleotide Whose Triphosphate is a Substrate for DNA Polymerase. Journal of the American Chemical Society, 2009, 131, 1344-1345.	13.7	13
147	DNA Damage and Interstrand Cross-Link Formation upon Irradiation of Aryl Iodide C-Nucleotide Analogues. Journal of Organic Chemistry, 2010, 75, 535-544.	3.2	13
148	Photochemical Generation and Reactivity of the Major Hydroxyl Radical Adduct of Thymidine. Organic Letters, 2012, 14, 2866-2869.	4.6	13
149	Independent Generation and Reactivity of Uridin-2′-yl Radical. Journal of Organic Chemistry, 2014, 79, 10303-10310.	3.2	12
150	Synergistic Effects of an Irreversible DNA Polymerase Inhibitor and DNA Damaging Agents on HeLa Cells. ACS Chemical Biology, 2017, 12, 1576-1583.	3.4	12
151	Enhanced Cleavage at Abasic Sites within Clustered Lesions in Nucleosome Core Particles. ChemBioChem, 2018, 19, 2061-2065.	2.6	12
152	Effect of Histone Lysine Methylation on DNA Lesion Reactivity in Nucleosome Core Particles. Chemical Research in Toxicology, 2019, 32, 910-916.	3.3	12
153	Chemistry of DNA Damage. , 1999, , 371-425.		11
154	Repair of the Major Lesion Resulting from C5′-Oxidation of DNA. Biochemistry, 2011, 50, 6273-6279.	2.5	11
155	DNA damage by C1027 involves hydrogen atom abstraction and addition to nucleobases. Bioorganic and Medicinal Chemistry, 2012, 20, 4744-4750.	3.0	11
156	Mechanistic Insight through Irreversible Inhibition: DNA Polymerase Î, Uses a Common Active Site for Polymerase and Lyase Activities. Journal of the American Chemical Society, 2018, 140, 9034-9037.	13.7	11
157	Reactivity of N3-Methyl-2′-Deoxyadenosine in Nucleosome Core Particles. Chemical Research in Toxicology, 2019, 32, 2118-2124.	3.3	11
158	DNA polymerase bypass in vitro and in E. coli of a C-nucleotide analogue of Fapy·dG. Bioorganic and Medicinal Chemistry, 2008, 16, 4029-4034.	3.0	10
159	Rapid RNA Strand Scission Following C2′-Hydrogen Atom Abstraction. Journal of the American Chemical Society, 2015, 137, 596-599.	13.7	10
160	The A-Rule and Deletion Formation During Abasic and Oxidized Abasic Site Bypass by DNA Polymerase Î, ACS Chemical Biology, 2017, 12, 1584-1592.	3.4	10
161	Histone Tail Sequences Balance Their Role in Genetic Regulation and the Need To Protect DNA against Destruction in Nucleosome Core Particles Containing Abasic Sites. ChemBioChem, 2019, 20, 78-82.	2.6	10
162	Synthesis of oligonucleotides containing 3'-alkyl amines using N-isobutyryl protected deoxyadenosine phosphoramidite. Tetrahedron Letters, 1997, 38, 3123-3126.	1.4	9

#	Article	IF	CITATIONS
163	Excision of a Lyase-Resistant Oxidized Abasic Lesion from DNA. Chemical Research in Toxicology, 2010, 23, 766-770.	3.3	9
164	Mutagenic Bypass of an Oxidized Abasic Lesion-Induced DNA Interstrand Cross-Link Analogue by Human Translesion Synthesis DNA Polymerases. Biochemistry, 2015, 54, 7409-7422.	2.5	9
165	Synthesis of 5-Methylene-2-pyrrolones. Organic Letters, 2018, 20, 4885-4887.	4.6	9
166	Positional Dependence of DNA Hole Transfer Efficiency in Nucleosome Core Particles. Journal of the American Chemical Society, 2019, 141, 10154-10158.	13.7	9
167	Reactivity of the C2â€~-Oxidized Abasic Lesion and Its Relevance to Interactions with Type I Base Excision Repair Enzymes. Chemical Research in Toxicology, 2006, 19, 463-468.	3.3	8
168	DNA Damage by Phenoxyl Radicals. , 0, , 421-443.		8
169	Photochemical Control of DNA Structure through Radical Disproportionation. ChemBioChem, 2013, 14, 1590-1596.	2.6	8
170	Double-Strand Breaks from a Radical Commonly Produced by DNA-Damaging Agents. Chemical Research in Toxicology, 2015, 28, 810-816.	3.3	8
171	A guardian residue hinders insertion of a Fapy•dGTP analog by modulating the open-closed DNA polymerase transition. Nucleic Acids Research, 2019, 47, 3197-3207.	14.5	8
172	Selective Inhibition of DNA Polymerase Î ² by a Covalent Inhibitor. Journal of the American Chemical Society, 2021, 143, 8099-8107.	13.7	8
173	Sequence context effects of replication of Fapy•dG in three mutational hot spot sequences of the p53 gene in human cells. DNA Repair, 2021, 108, 103213.	2.8	8
174	Synthesis and Deprotection of Oligonucleotides under Aprotic Conditions. Organic Letters, 2000, 2, 3691-3694.	4.6	7
175	Transcription inhibition using modified pentanucleotides. Bioorganic and Medicinal Chemistry, 2003, 11, 2321-2328.	3.0	7
176	Human DNA Polymerase β, but Not λ, Can Bypass a 2-Deoxyribonolactone Lesion Together with Proliferating Cell Nuclear Antigen. ACS Chemical Biology, 2013, 8, 336-344.	3.4	7
177	Pyrimidine nucleobase radical reactivity in DNA and RNA. Radiation Physics and Chemistry, 2016, 128, 82-91.	2.8	7
178	Independent Photochemical Generation and Reactivity of Nitrogen-Centered Purine Nucleoside Radicals from Hydrazines. Organic Letters, 2017, 19, 6444-6447.	4.6	7
179	<i>In Vitro</i> Bypass of Thymidine Glycol by DNA Polymerase Î, Forms Sequence-Dependent Frameshift Mutations. Biochemistry, 2017, 56, 6726-6733.	2.5	7
180	Independent Generation and Timeâ€Resolved Detection of 2′â€Deoxyguanosinâ€ <i>N2</i> â€yl Radicals. Angewandte Chemie - International Edition, 2020, 59, 13406-13413.	13.8	7

#	Article	IF	CITATIONS
181	Reactivity and DNA Damage by Independently Generated 2′-Deoxycytidin- <i>N</i> 4-yl Radical. Journal of the American Chemical Society, 2021, 143, 14738-14747.	13.7	7
182	An Oxidized Abasic Lesion as an Intramolecular Source of DNA Adducts. Australian Journal of Chemistry, 2011, 64, 438.	0.9	6
183	Nucleotide Excision Repair of Chemically Stabilized Analogues of DNA Interstrand Cross-Links Produced from Oxidized Abasic Sites. Biochemistry, 2014, 53, 5958-5965.	2.5	6
184	Bromopyridone Nucleotide Analogues, Anoxic Selective Radiosensitizing Agents That Are Incorporated in DNA by Polymerases. Journal of Organic Chemistry, 2015, 80, 10675-10685.	3.2	6
185	Correlation of Thermal Stability and Structural Distortion of DNA Interstrand Cross-Links Produced from Oxidized Abasic Sites with Their Selective Formation and Repair. Biochemistry, 2015, 54, 6274-6283.	2.5	6
186	Independent Generation and Reactivity of Thymidine Radical Cations. Journal of Organic Chemistry, 2017, 82, 11072-11083.	3.2	6
187	Synthesis of Oligonucleotides Containing the <i>N</i> ^{<i>6</i>} à€{2â€Deoxyâ€i+,ĵ²â€ <scp>d</scp> â€erythropentofuranosyl)â€2,6â€diaminoâ€4 (Fapyâ <dg) -="" 2′â€deoxyguanosine.="" a="" chemistry="" damage="" derived="" european="" from="" journal,<br="" oxidative="" product="">2020. 26. 5441-5448.</dg)>	â€hydroxy	/â€5â€forma
188	Structural Dynamics of a Common Mutagenic Oxidative DNA Lesion in Duplex DNA and during DNA Replication. Journal of the American Chemical Society, 2022, 144, 8054-8065.	13.7	6
189	DNA interstrand cross-links from modified nucleotides: mechanism and application. Nucleic Acids Symposium Series, 2005, 49, 57-58.	0.3	5
190	Participation of Histones in DNA Damage and Repair within Nucleosome Core Particles: Mechanism and Applications. Accounts of Chemical Research, 2022, 55, 1059-1073.	15.6	5
191	Intracellular Formation of a DNA Damage-Induced, Histone Post-Translational Modification Following Bleomycin Treatment. Journal of the American Chemical Society, 2022, 144, 7600-7605.	13.7	5
192	Template-Free Segmental Synthesis of Oligonucleotides Containing Nonnative Linkages. Journal of Organic Chemistry, 2001, 66, 7151-7154.	3.2	4
193	Reactions of Reactive Nitrogen Species and Carbonate Radical Anions with DNA. , 0, , 325-355.		4
194	DNA Polymerase V Kinetics Support the Instructive Nature of an Oxidized Abasic Lesion in <i>Escherichia coli</i> . Biochemistry, 2013, 52, 6301-6303.	2.5	4
195	Mechanistic Studies on RNA Strand Scission from a C2′-Radical. Journal of Organic Chemistry, 2016, 81, 9199-9205.	3.2	4
196	Expanded Substrate Scope of DNA Polymerase Î, and DNA Polymerase β: Lyase Activity on 5′-Overhangs and Clustered Lesions. Biochemistry, 2018, 57, 6119-6127.	2.5	4
197	Independent Generation and Reactivity of 2′-Deoxyguanosin- <i>N</i> 1-yl Radical. Journal of Organic Chemistry, 2020, 85, 8665-8672.	3.2	4
198	An oxidized abasic lesion inhibits base excision repair leading to DNA strand breaks in a trinucleotide repeat tract. PLoS ONE, 2018, 13, e0192148.	2.5	4

#	Article	IF	CITATIONS
199	Mutagenic Effects of a 2-Deoxyribonolactone-Thymine Glycol Tandem DNA Lesion in Human Cells. Biochemistry, 2020, 59, 417-424.	2.5	3
200	Sequence selective tagging of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) using PNAs. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4918-4921.	2.2	2
201	Reactivity of the Major Product of C5′â€Oxidative DNA Damage in Nucleosome Core Particles. ChemBioChem, 2019, 20, 672-676.	2.6	2
202	Suppression of DNA Polymerase β Activity Is Synthetically Lethal in BRCA1-Deficient Cells. ACS Chemical Biology, 2021, 16, 1339-1343.	3.4	2
203	Radical Intermediates during Reductive Electron Transfer through DNA. , 0, , 211-237.		1
204	Identification of proximal sites for unwound <scp>DNA</scp> substrate in <i>Escherichia coli</i> topoisomerase I with oxidative crosslinking. FEBS Letters, 2017, 591, 28-38.	2.8	1
205	Protein Domain Specific Covalent Inhibition of Human DNA Polymerase β. ChemBioChem, 2021, 22, 2619-2623.	2.6	1
206	Kinetics of Long-Range Oxidative Electron Transfer through DNA. , 0, , 191-210.		0
207	Independent Generation and Timeâ€Resolved Detection of 2′â€Deoxyguanosin―N2 â€yl Radicals. Angewanc Chemie, 2020, 132, 13508-13515.	lte 2.0	0