Bishwajit Kundu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5165386/publications.pdf

Version: 2024-02-01

		394421	377865
51	1,260 citations	19	34
papers	citations	h-index	g-index
52	52	52	1820
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Protein engineering: Methods and applications. , 2022, , 641-668.		1
2	Investigating the role of l-asparaginase as a potential therapeutic target against gonorrhea infections. Biophysical Journal, 2022, 121, 190a.	0.5	2
3	Antimicrobialâ€resistant <i>Neisseria gonorrhoeae</i> can be targeted using inhibitors against evolutionary conserved <scp>l</scp> â€asparaginase. Journal of Cellular Biochemistry, 2022, 123, 1171-1182.	2.6	3
4	Hybrid mesoporous silica-based nanocarriers for responsive drug release in cancerous cell line. Applied Nanoscience (Switzerland), 2021, 11, 217-228.	3.1	3
5	Distinct functional properties of secretory l-asparaginase Rv1538c involved in phagosomal survival of Mycobacterium tuberculosis. Biochimie, 2021, 182, 1-12.	2.6	2
6	Protective Effects of a Neurohypophyseal Hormone Analogue on Prion Aggregation, Cellular Internalization, and Toxicity. ACS Chemical Neuroscience, 2020, 11, 2422-2430.	3 . 5	6
7	Prion protein transcription is auto-regulated through dynamic interactions with G-quadruplex motifs in its own promoter. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194479.	1.9	9
8	Heat induces end to end repetitive association in P. furiosus l-asparaginase which enables its thermophilic property. Scientific Reports, 2020, 10, 21702.	3.3	8
9	Application of a protein domain as chaperone for enhancing biological activity and stability of other proteins. Journal of Biotechnology, 2020, 310, 68-79.	3 . 8	2
10	Specific keratinase derived designer peptides potently inhibit $\hat{Al^2}$ aggregation resulting in reduced neuronal toxicity and apoptosis. Biochemical Journal, 2019, 476, 1817-1841.	3.7	5
11	Most Variable Genes and Transcription Factors in Acute Lymphoblastic Leukemia Patients. Interdisciplinary Sciences, Computational Life Sciences, 2019, 11, 668-678.	3.6	9
12	Identification and validation of <scp> </scp> â€asparaginase as a potential metabolic target against <i>Mycobacterium tuberculosis</i> . Journal of Cellular Biochemistry, 2019, 120, 143-154.	2.6	8
13	Exploring the aggregation-prone regions from structural domains of human TDP-43. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 286-296.	2.3	27
14	Human Epididymis Protein 4 Quantification and Interaction Network Analysis in Seminal Plasma. Protein and Peptide Letters, 2019, 26, 458-465.	0.9	4
15	The Gelsolin Pathogenic D187N Mutant Exhibits Altered Conformational Stability and Forms Amyloidogenic Oligomers. Biochemistry, 2018, 57, 2359-2372.	2.5	16
16	Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Molecular Neurobiology, 2018, 55, 8355-8373.	4.0	9
17	Heterologous expression of an engineered protein domain acts as chaperone and enhances thermotolerance of Escherichia coli. International Journal of Biological Macromolecules, 2018, 107, 2086-2093.	7.5	3
18	Interplay between CedA, rpoB and double stranded DNA: A step towards understanding CedA mediated cell division in E. coli. International Journal of Biological Macromolecules, 2018, 107, 2026-2033.	7.5	5

#	Article	IF	CITATIONS
19	Biophysical insight into the heparinâ€peptide interaction and its modulation by a small molecule. Journal of Molecular Recognition, 2018, 31, e2674.	2.1	13
20	Identification of functional interactome of a key cell division regulatory protein CedA of E.coli. International Journal of Biological Macromolecules, 2018, 106, 763-767.	7.5	3
21	Clove and lemongrass oil based non-ionic nanoemulsion for suppressing the growth of plant pathogenic Fusarium oxysporum f.sp. lycopersici. Industrial Crops and Products, 2018, 123, 353-362.	5.2	87
22	Polyphenols in combination with \hat{l}^2 -cyclodextrin can inhibit and disaggregate \hat{l}_\pm -synuclein amyloids under cell mimicking conditions: A promising therapeutic alternative. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 589-603.	2.3	49
23	Hyperthermophilic I -asparaginase bypasses monomeric intermediates during folding to retain cooperativity and avoid amyloid assembly. Archives of Biochemistry and Biophysics, 2017, 622, 36-46.	3.0	9
24	DNA intercalators as amyloid assembly modulators: mechanistic insights. RSC Advances, 2017, 7, 493-506.	3.6	3
25	Modulation of prion polymerization and toxicity by rationally designed peptidomimetics. Biochemical Journal, 2017, 474, 123-147.	3.7	17
26	L-Asparaginase of Leishmania donovani: Metabolic target and its role in Amphotericin B resistance. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 337-349.	3.4	20
27	Arjunolic acid, a peroxisome proliferator-activated receptor \hat{l}_{\pm} agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF- \hat{l}^2 signaling. Journal of Biological Chemistry, 2017, 292, 16440-16462.	3.4	50
28	Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. Journal of Bioscience and Bioengineering, 2017, 123, 308-313.	2.2	116
29	Clues for divergent, polymorphic amyloidogenesis through dissection of amyloid forming steps of bovine carbonic anhydrase and its critical amyloid forming stretch. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 794-804.	2.3	11
30	Gelsolin Amyloidogenesis Is Effectively Modulated by Curcumin and Emetine Conjugated PLGA Nanoparticles. PLoS ONE, 2015, 10, e0127011.	2.5	24
31	Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 426-436.	2.3	106
32	<scp> -Asparaginase as a new molecular target against leishmaniasis: insights into the mechanism of action and structure-based inhibitor design. Molecular BioSystems, 2015, 11, 1887-1896.</scp>	2.9	23
33	Stable self-assembled nanostructured hen egg white lysozyme exhibits strong anti-proliferative activity against breast cancer cells. Colloids and Surfaces B: Biointerfaces, 2015, 130, 237-245.	5.0	49
34	Domains of Pyrococcus furiosus l-asparaginase fold sequentially and assemble through strong intersubunit associative forces. Extremophiles, 2015, 19, 681-691.	2.3	10
35	Structural and functional insights into an archaeal <scp>L</scp> -asparaginase obtained through the linker-less assembly of constituent domains. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3187-3197.	2.5	25
36	Selective Interception of Gelsolin Amyloidogenic Stretch Results in Conformationally Distinct Aggregates with Reduced Toxicity. ACS Chemical Neuroscience, 2014, 5, 982-992.	3.5	21

#	Article	IF	Citations
37	Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection inÂVivo. Cell Reports, 2013, 4, 248-254.	6.4	28
38	Nâ€ŧerminal domain of <i><scp>P</scp>yrococcusÂfuriosus </i> <scp>I</scp> â€asparaginase functions as a nonâ€specific, stable, molecular chaperone. FEBS Journal, 2013, 280, 2688-2699.	4.7	21
39	Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action. FASEB Journal, 2012, 26, 1161-1171.	0.5	64
40	Structural stability and functional analysis of L-asparaginase from Pyrococcus furiosus. Biochemistry (Moscow), 2010, 75, 375-381.	1.5	64
41	Prion metal interaction: Is prion pathogenesis a cause or a consequence of metal imbalance?. Chemico-Biological Interactions, 2009, 181, 282-291.	4.0	29
42	Formation of amyloid fibrils by bovine carbonic anhydrase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 930-935.	2.3	15
43	Modulation of Proteinase K-resistant Prion Protein in Cells and Infectious Brain Homogenate by Redox Iron: Implications for Prion Replication and Disease Pathogenesis. Molecular Biology of the Cell, 2007, 18, 3302-3312.	2.1	58
44	Interplay between DtxR and nitric oxide reductase activities: a functional genomics approach indicating involvement of homologous protein domains in bacterial pathogenesis. International Journal of Experimental Pathology, 2007, 88, 377-385.	1.3	1
45	Predicting alternate structure attainment and amyloidogenesis: A nonlinear signal analysis approach. Biochemical and Biophysical Research Communications, 2005, 338, 1410-1416.	2.1	8
46	The excised heat-shock domain of $\hat{l}\pm B$ crystallin is a folded, proteolytically susceptible trimer with significant surface hydrophobicity and a tendency to self-aggregate upon heating. Protein Expression and Purification, 2004, 36, 263-271.	1.3	11
47	Peptide scanning-based identification of regions of \hat{l}^3 -II crystallin involved in thermal aggregation: Evidence of the involvement of structurally analogous, helix-containing loops from the two double Greek key domains of the molecule. Archives of Biochemistry and Biophysics, 2003, 410, 69-75.	3.0	7
48	Nucleation-dependent conformational conversion of the Y145Stop variant of human prion protein: Structural clues for prion propagation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12069-12074.	7.1	92
49	Manipulation of Unfolding-Induced Protein Aggregation by Peptides Selected for Aggregate-Binding Ability through Phage Display Library Screening. Biochemical and Biophysical Research Communications, 2002, 291, 903-907.	2.1	5
50	Use of a hydrophobic dye to indirectly probe the structural organization and conformational plasticity of molecules in amorphous aggregates of carbonic anhydrase. Biochemical and Biophysical Research Communications, 2002, 293, 572-577.	2.1	57
51	Hydrophobic dye inhibits aggregation of molten carbonic anhydrase during thermal unfolding and refolding., 1999, 37, 321-324.		34