Jessica Calvo Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5165333/publications.pdf

Version: 2024-02-01

567144 454834 46 954 15 30 g-index citations h-index papers 46 46 46 675 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructural analysis of a partially recrystallized nickel-based superalloy undergoing delta-processing. Journal of Alloys and Compounds, 2022, 907, 164403.	2.8	6
2	Fracture Resistance of Advanced High-Strength Steel Sheets for Automotive Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 840-856.	1.1	32
3	Analysis of strain-induced precipitates by delta-processing in Inconel 718 superalloy. Materials Characterization, 2021, 173, 110926.	1.9	11
4	Microstructural effects on fracture toughness of ultra-high strength dual phase sheet steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140631.	2.6	26
5	EBSD Study of Delta-Processed Ni-Based Superalloy. Metals, 2020, 10, 1466.	1.0	15
6	Enhancement of pitting corrosion resistance for AA1050 processed by continuous closed die forging. Journal of Materials Research and Technology, 2020, 9, 13185-13195.	2.6	3
7	The Effect of Pre-Annealing on the Evolution of the Microstructure and Mechanical Behavior of Aluminum Processed by a Novel SPD Method. Materials, 2020, 13, 2361.	1.3	6
8	Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results. Physics of Metals and Metallography, 2020, 121, 32-40.	0.3	7
9	Identification of fracture toughness parameters to understand the fracture resistance of advanced high strength sheet steels. Engineering Fracture Mechanics, 2020, 229, 106949.	2.0	45
10	High-Temperature Deformation Behavior of 718Plus: Consideration of $\hat{I}^3\hat{a}\in^2$ Effects. Materials Performance and Characterization, 2020, 9, 20190031.	0.2	3
11	Metal injection moulding (MIM) as an alternative fabrication process for the production of TWIP steel. Powder Metallurgy, 2019, 62, 205-211.	0.9	4
12	On the correlation between fracture toughness and crash resistance of advanced high strength steels. Engineering Fracture Mechanics, 2019, 205, 319-332.	2.0	40
13	High-temperature deformation of delta-processed Inconel 718. Journal of Materials Processing Technology, 2018, 255, 204-211.	3.1	60
14	Microstructure and Mechanical Properties of Linear Friction Welded Titanium Subjected to ECAP. Reviews on Advanced Materials Science, 2018, 57, 104-109.	1.4	2
15	Effect of Sandblasting on Low and High-Cycle Fatigue Behaviour after Mechanical Cutting of a Twinning-Induced Plasticity Steel. MATEC Web of Conferences, 2018, 165, 18002.	0.1	3
16	Novel Method of Severe Plastic Deformation - Continuous Closed Die Forging: CP Aluminum Case Study. Defect and Diffusion Forum, 2018, 385, 302-307.	0.4	4
17	High-Temperature Deformation of Inconel 718PlusTM. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	0.5	4
18	Equal channel angular pressing of a TWIP steel: microstructure and mechanical response. Journal of Materials Science, 2017, 52, 6291-6309.	1.7	26

#	Article	IF	Citations
19	Twin-Induced Plasticity of an ECAP-Processed TWIP Steel. Journal of Materials Engineering and Performance, 2017, 26, 554-562.	1.2	17
20	A Physically Based Model for High Temperature Deformation of Inconel 718Plusâ"¢., 2017, , .		0
21	Assessing edge cracking resistance in AHSS automotive parts by the Essential Work of Fracture methodology. Journal of Physics: Conference Series, 2017, 896, 012102.	0.3	14
22	Theoretical and Experimental Nucleation and Growth of Precipitates in a Medium Carbon–Vanadium Steel. Metals, 2017, 7, 45.	1.0	4
23	High Temperature Deformation of Inconel 718Plusâ,,¢., 2016,,.		O
24	Phase transformation under thermal fatigue of high Mn-TWIP steel: Microstructure and mechanical properties. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 431-437.	2.6	5
25	Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 137-152.	2.6	182
26	Characterization of Strain-Induced Precipitation in Inconel 718 Superalloy. Journal of Materials Engineering and Performance, 2016, 25, 3409-3417.	1.2	31
27	Stress–strain response and microstructural evolution of a FeMnCAl TWIP steel during tension–compression tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 310-320.	2.6	10
28	Microstructural evolution and constitutive equations of Inconel 718 alloy under quasi-static and quasi-dynamic conditions. Materials and Design, 2016, 94, 28-38.	3.3	74
29	Plastic deformation and damage induced by fatigue in TWIP steels. Materials Science & Discrete Science & Properties, Microstructure and Processing, 2015, 628, 410-418.	2.6	20
30	Influence of laser cutting on the fatigue limit of two high strength steels*. Materialpruefung/Materials Testing, 2015, 57, 136-140.	0.8	7
31	Effect of Ti and B microadditions on the hot ductility behavior of a High-Mn austenitic Fe–23Mn–1.5Al–1.3Si–0.5C TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 311-329.	2.6	38
32	Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 616, 229-239.	2.6	50
33	Classical controlled rolling of low C steels microalloyed with Ti and Mo. International Journal of Materials Research, 2014, 105, 537-543.	0.1	2
34	Hot ductility behavior of high-Mn austenitic Fe–22Mn–1.5Al–1.5Si–0.45C TWIP steels microalloyed with Ti and V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 77-89.	2.6	62
35	Effect of V on Hot Deformation Characteristics of TWIP Steels. Steel Research International, 2012, 83, 334-339.	1.0	14
36	Design of Microalloyed Steel Hot Rolling Schedules by Torsion Testing: Average Schedule vs. Real Schedule. ISIJ International, 2010, 50, 1193-1199.	0.6	12

#	Article	IF	CITATIONS
37	Strengthening of HSLA steels by cool deformation. Materials Science & Diplomation A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4233-4240.	2.6	13
38	Analysis of Hot Tensile and Compression Curves to Assess the Hot Ductility of C-Mn Steels. Materials Science Forum, 2010, 638-642, 3158-3163.	0.3	0
39	Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 520, 90-96.	2.6	45
40	Effect of Cool Deformation on the Mechanical Properties of Low C Microalloyed Steels. , 2008, , .		0
41	Analysis of Copper Effect on Microstructures and Mechanical Properties in Microalloyed Steels. ISIJ International, 2008, 48, 107-113.	0.6	9
42	Evaluation of the Hot Ductility of a C& ndash; Mn Steel Produced from Scrap Recycling. ISIJ International, 2007, 47, 1518-1526.	0.6	27
43	Effect of the thermal cycle on the hot ductility and fracture mechanisms of a C–Mn steel. Engineering Failure Analysis, 2007, 14, 374-383.	1.8	14
44	Hot ductility and fracture mechanisms of a structural steel. Revista De Metalurgia, 2006, 42, .	0.1	2
45	Study of the Hot Ductility and Fracture Mechanisms of a Medium Carbon Steel. Materials Science Forum, 2003, 442, 49-54.	0.3	1
46	Characterization of Precipitation Kinetics of Inconel 718 Superalloy by the Stress Relaxation Technique. Materials Science Forum, 0, 706-709, 2393-2399.	0.3	4