
John R Regalbuto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5164785/publications.pdf Version: 2024-02-01

IOHN P RECAIRUTO

#	Article	IF	CITATIONS
1	All the lonely atoms, where do they all belong?. Nature Nanotechnology, 2022, 17, 110-111.	31.5	3
2	Dilute Limit Alloy Pd–Cu Bimetallic Catalysts Prepared by Simultaneous Strong Electrostatic Adsorption: A Combined Infrared Spectroscopic and Density Functional Theory Investigation. Journal of Physical Chemistry C, 2022, 126, 11111-11128.	3.1	4
3	The stabilization of supported Au nanoparticles in a highly sintering environment using high surface free energy Pt and Ru cores. Journal of Materials Chemistry A, 2021, 9, 23223-23233.	10.3	0
4	Supported nanoparticle synthesis with Au bis-Ethylenediamine: The mechanism of adsorption onto oxides and carbons. Journal of Catalysis, 2021, 393, 344-356.	6.2	5
5	High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nature Energy, 2021, 6, 834-843.	39.5	238
6	An analysis of electroless deposition derived Ni-Pt catalysts for the dry reforming of methane. Journal of Catalysis, 2020, 381, 374-384.	6.2	36
7	Effects of Pd Nanoparticle Loading and Support Acidity on Liquid Phase Hydrodeoxygenation of Oxygenated Aromatics. ACS Symposium Series, 2020, , 213-238.	0.5	0
8	Stabilization of Catalytic Surfaces through Core–Shell Structures: Ag–Ir/Al ₂ O ₃ Case Study. ACS Catalysis, 2020, 10, 13352-13363.	11.2	4
9	Enhanced Performance of Oxygen-Functionalized Multiwalled Carbon Nanotubes as Support for Pt and Pt–Ru Bimetallic Catalysts for Methanol Electrooxidation. ACS Applied Energy Materials, 2020, 3, 5487-5496.	5.1	18
10	Rectifying the chemisorption – XRD discrepancy of carbon supported Pd: Residual chloride and/or carbon decoration. Applied Catalysis A: General, 2020, 595, 117504.	4.3	8
11	Rational synthesis of bimetallic catalysts using electroless deposition methods. Catalysis, 2020, , 116-150.	1.0	6
12	Pushing the limits of electrostatic adsorption: charge enhanced dry impregnation of SBA-15. Catalysis Today, 2019, 338, 60-71.	4.4	12
13	Ruthenium–platinum bimetallic catalysts with controlled surface compositions and enhanced performance for methanol oxidation. Catalysis Today, 2019, 334, 156-161.	4.4	7
14	The Use of Salts to Control Silica Supported Pt Particle Size in Charge Enhanced Dry Impregnation Syntheses. Catalysis Today, 2019, 334, 187-192.	4.4	6
15	Catalytic Nâ^'H Bond Activation and Breaking by a Wellâ€Defined Co ^{II} ₁ O ₄ Site of a Heterogeneous Catalyst. ChemCatChem, 2018, 10, 736-742.	3.7	8
16	Understanding Uptake of Pt Precursors During Strong Electrostatic Adsorption on Single-Crystal Carbon Surfaces. Topics in Catalysis, 2018, 61, 379-388.	2.8	9
17	Using polyfurfuryl alcohol to improve the hydrothermal stability of mesoporous oxides for reactions in the aqueous phase. Journal of Porous Materials, 2018, 25, 407-414.	2.6	4
18	Ambient Oxidation of Ultrasmall Platinum Nanoparticles on Microporous Carbon Catalyst Supports. ACS Applied Nano Materials, 2018, 1, 5876-5884.	5.0	15

John R Regalbuto

#	Article	IF	CITATIONS
19	Nanoparticle Synthesis via Electrostatic Adsorption Using Incipient Wetness Impregnation. ACS Catalysis, 2018, 8, 10383-10391.	11.2	28
20	Electrostatic Adsorption of Platinum onto Carbon Nanotubes and Nanofibers for Nanoparticle Synthesis. Journal of Carbon Research, 2018, 4, 12.	2.7	2
21	Aqueous-Phase Hydrogenation of Succinic Acid Using Bimetallic Ir–Re/C Catalysts Prepared by Strong Electrostatic Adsorption. ACS Catalysis, 2018, 8, 6486-6494.	11.2	34
22	Alkali promotion of alumina-supported ruthenium catalysts for hydrogenation of levulinic acid to Î ³ -valerolactone. Journal of Catalysis, 2017, 347, 72-78.	6.2	48
23	Continuous-flow synthesis of Cu—M (M=Ni, Co) core—shell nanocomposites. Journal of Flow Chemistry, 2017, 7, 18-22.	1.9	2
24	Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science, 2017, 358, 1427-1430.	12.6	275
25	A Review of Preparation Methods for Supported Metal Catalysts. Advances in Catalysis, 2017, 61, 1-35.	0.2	63
26	Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption. Fuel, 2017, 207, 510-521.	6.4	20
27	Detection of Ambient Oxidation of Ultrasmall Supported Platinum Nanoparticles with Benchtop Powder X-Ray Diffraction. Catalysis Letters, 2017, 147, 1754-1764.	2.6	28
28	A pinch of salt to control supported Pt nanoparticle size. Catalysis Today, 2017, 280, 246-252.	4.4	11
29	Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation. Catalysts, 2016, 6, 83.	3.5	21
30	The Simple, Effective Synthesis of Highly Dispersed Pd/C and CoPd/C Heterogeneous Catalysts via Charge-Enhanced Dry Impregnation. Catalysts, 2016, 6, 72.	3.5	5
31	The controlled synthesis of metal-acid bifunctional catalysts: Selective Pt deposition and nanoparticle synthesis on amorphous aluminosilicates. Journal of Catalysis, 2016, 342, 213-225.	6.2	39
32	The controlled synthesis of metal-acid bifunctional catalysts: The effect of metal:acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization. Journal of Catalysis, 2016, 342, 203-212.	6.2	109
33	Synthesis of Ag nanoparticles on oxide and carbon supports from Ag diammine precursor. Journal of Catalysis, 2016, 344, 749-756.	6.2	15
34	The catalytic behavior of precisely synthesized Pt–Pd bimetallic catalysts for use as diesel oxidation catalysts. Catalysis Today, 2016, 267, 145-156.	4.4	42
35	A Comparison of Pt(II) and Pt(IV) Chloride Precursors for Strong Electrostatic Adsorption Synthesis of Pt/Alumina and Pt/Carbon Catalysts. Catalysis Letters, 2016, 146, 157-162.	2.6	5
36	Characterization and evaluation of Pt-Pd electrocatalysts prepared by electroless deposition. Applied Catalysis B: Environmental, 2016, 188, 367-375.	20.2	21

John R Regalbuto

#	Article	IF	CITATIONS
37	Synthesis of Platinum Catalysts over Thick Slurries of Oxide Supports by Strong Electrostatic Adsorption. ChemCatChem, 2015, 7, 3460-3463.	3.7	19
38	The rational synthesis of Pt-Pd bimetallic catalysts by electrostatic adsorption. Catalysis Today, 2015, 246, 143-153.	4.4	45
39	Chemisorption–XRD particle size discrepancy of carbon supported palladium: Carbon decoration of Pd?. Catalysis Today, 2015, 246, 9-14.	4.4	43
40	High Sensitivity Silicon Slit Detectors for 1Ânm Powder XRD Size Detection Limit. Catalysis Letters, 2015, 145, 777-783.	2.6	69
41	Preparation and Characterization of Pt–Ru Bimetallic Catalysts Synthesized by Electroless Deposition Methods. ACS Catalysis, 2015, 5, 5123-5134.	11.2	58
42	Rational nanoparticle synthesis to determine the effects of size, support, and K dopant on Ru activity for levulinic acid hydrogenation to γ-valerolactone. Journal of Catalysis, 2015, 326, 69-81.	6.2	89
43	Sophie Hermans and Thierry Visart de Bocarmé (eds.): Atomically-Precise Methods for Synthesis of Solid Catalysts. Catalysis Letters, 2015, 145, 2055-2056.	2.6	0
44	The control of Pt and Ru nanoparticle size on high surface area supports. Physical Chemistry Chemical Physics, 2014, 16, 26431-26435.	2.8	18
45	Determining surface composition of mixed oxides with pH. Journal of Colloid and Interface Science, 2014, 436, 204-210.	9.4	13
46	Charge-Enhanced Dry Impregnation: A Simple Way to Improve the Preparation of Supported Metal Catalysts. ACS Catalysis, 2013, 3, 625-630.	11.2	61
47	Selective Adsorption of Manganese onto Rhodium for Optimized Mn/Rh/SiO ₂ Alcohol Synthesis Catalysts. ChemCatChem, 2013, 5, 3665-3672.	3.7	42
48	Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer–Tropsch catalysts. Journal of Catalysis, 2010, 270, 95-102.	6.2	98
49	The determination of oxide surface charging parameters for a predictive metal adsorption model. Journal of Colloid and Interface Science, 2010, 348, 571-578.	9.4	16
50	Preparation of highly loaded Pt/carbon xerogel catalysts for Proton Exchange Membrane fuel cells by the Strong Electrostatic Adsorption method. Catalysis Today, 2010, 150, 119-127.	4.4	51
51	The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica. Journal of Catalysis, 2008, 260, 329-341.	6.2	226
52	A Scientific Method to Prepare Supported Metal Catalysts. , 2006, , 161-194.		8
53	The nature of â€~overexchanged' copper and platinum on zeolites. Nanotechnology, 2005, 16, S582-S591.	2.6	39
54	The control of platinum impregnation by PZC alteration of oxides and carbon. Journal of Molecular Catalysis A, 2004, 219, 97-107.	4.8	100

#	Article	IF	CITATIONS
55	A fundamental study of Pt tetraammine impregnation of silica1. The electrostatic nature of platinum adsorption. Journal of Catalysis, 2004, 225, 190-202.	6.2	138
56	A fundamental study of platinum tetraammine impregnation of silica2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size. Journal of Catalysis, 2004, 225, 203-212.	6.2	156
57	A further simplification of the revised physical adsorption (RPA) model. Journal of Colloid and Interface Science, 2003, 267, 259-264.	9.4	70
58	A Simple, Accurate Determination of Oxide PZC and the Strong Buffering Effect of Oxide Surfaces at Incipient Wetness. Journal of Colloid and Interface Science, 1995, 175, 239-252.	9.4	250
59	Retardation of platinum adsorption over oxide supports at pH extremes: oxide dissolution or high ionic strength?. Langmuir, 1994, 10, 500-504.	3.5	26