Jorge Elizalde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5164775/publications.pdf

Version: 2024-02-01

759233 713466 33 638 12 21 h-index citations g-index papers 33 33 33 825 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-Powered Photovoltaic Bluetooth \hat{A}^{\otimes} Low Energy Temperature Sensor Node. IEEE Access, 2021, 9, 111305-111314.	4.2	2
2	Vacuum packaging and semipassive chips for wireless temperature monitoring in industrial applications. , $2017, , .$		2
3	Ambient Temperature Effects on Data Logging IC's Power Consumption: Monitoring Ready Meal Delivery Services. Proceedings (mdpi), 2017, 2, .	0.2	O
4	Standalone Point-of-Use Device for Gluten Detection in Food: POCT Application Experiment in SMARTER-SI European Project. Proceedings (mdpi), 2017, 2, .	0.2	0
5	Multi-parametric Point of Care Device for Allergen-specific IgE Detection in Veterinary Applications. Procedia Engineering, 2016, 168, 1410-1413.	1.2	2
6	Low cost polymeric on-chip flow sensor with nanoliter resolution. Sensors and Actuators B: Chemical, 2016, 235, 188-196.	7.8	16
7	Fluidic flow delay by ionogel passive pumps in microfluidic paper-based analytical devices. Sensors and Actuators B: Chemical, 2016, 233, 402-408.	7.8	47
8	Smart monolithic integration of inkjet printed thermal flow sensors with fast prototyping polymer microfluidics. Smart Materials and Structures, 2016, 25, 085022.	3.5	1
9	Microscale electrodes integrated on COP for real sample Campylobacter spp. detection. Biosensors and Bioelectronics, 2015, 70, 491-497.	10.1	26
10	A simple and portable device for the quantification of TNF- \hat{l}_{\pm} in human plasma by means of on-chip magnetic bead-based proximity ligation assay. Biosensors and Bioelectronics, 2014, 54, 499-505.	10.1	18
11	Highly integrated COP monolithic membrane microvalves by robust hot embossing. Sensors and Actuators B: Chemical, 2014, 190, 451-458.	7.8	10
12	A microfluidic magnetic bead-based proximity ligation assay device for the quantification of TNF-& $\#$ x03B1; in human plasma. , 2013, , .		0
13	A highly integrated vertical SU8 valve for stepwise in-series reactions. Journal of Micromechanics and Microengineering, 2011, 21, 065037.	2.6	4
14	Fabrication and testing of a SU-8 thermal flow sensor. Sensors and Actuators B: Chemical, 2010, 147, 411-417.	7.8	41
15	Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers. , 2009, , .		11
16	Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing. Journal of Micromechanics and Microengineering, 2006, 16, 1006-1016.	2.6	74
17	A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip. Sensors and Actuators B: Chemical, 2006, 114, 542-551.	7.8	70
18	3-D polymeric microfluidic devices for BioMOEMS applications. , 2005, 5839, 127.		2

#	Article	IF	CITATIONS
19	Novel low-temperature CMOS-compatible full-wafer-bonding process for the fabrication of 3D embedded microchannels using SU-8. , 2004, , .		4
20	Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding. Journal of Micromechanics and Microengineering, 2004, 14, 1047-1056.	2.6	149
21	Technological aspects on the fabrication of silicon-based optical accelerometer with ARROW structures. Sensors and Actuators A: Physical, 2004, 110, 395-400.	4.1	9
22	BESOI-Based Integrated Optical Silicon Accelerometer. Journal of Microelectromechanical Systems, 2004, 13, 355-364.	2.5	37
23	Characterization and Passivation Effects of an Optical Accelerometer Based on Antiresonant Waveguides. IEEE Photonics Technology Letters, 2004, 16, 233-235.	2.5	10
24	A micromachined pressure sensor for biomedical applications. Journal of Micromechanics and Microengineering, 1997, 7, 244-246.	2.6	16
25	Optimization of a three-electrode electrochemical etch-stop process. Sensors and Actuators A: Physical, 1997, 62, 668-671.	4.1	3
26	A design tool for pressure microsensors based on FEM simulations. Sensors and Actuators A: Physical, 1997, 62, 591-594.	4.1	25
27	Thin film technology applied to the development of a multilayer pressure sensor device. Vacuum, 1994, 45, 1103-1105.	3.5	7
28	Strain sensitivity and temperature influence on sputtered thin films for piezoresistive sensors. Sensors and Actuators A: Physical, 1993, 37-38, 784-789.	4.1	38
29	Stress free quad beam optical silicon accelerometer. , 0, , .		5
30	ARROW-based optical accelerometers., 0,,.		0
31	Monolithic integration of microfluidic channels and optical waveguides using a photodefinable epoxy. , 0 , , .		8
32	Novel polymer multilayer CMOS compatible technology for multilevel microfludic devices. , 0, , .		1
33	Fabrication of an electrodeposited nickel membrane for microflow control. , 0, , .		0