

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5164090/publications.pdf Version: 2024-02-01

Τλο Χιι

#	Article	IF	CITATIONS
1	Inkjet printing of viable mammalian cells. Biomaterials, 2005, 26, 93-99.	11.4	914
2	Application of inkjet printing to tissue engineering. Biotechnology Journal, 2006, 1, 910-917.	3.5	695
3	Biofabrication: reappraising the definition of an evolving field. Biofabrication, 2016, 8, 013001.	7.1	523
4	Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 2013, 34, 130-139.	11.4	518
5	Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 2013, 5, 015001.	7.1	475
6	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	9.3	465
7	Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006, 27, 3580-8.	11.4	410
8	Inkjet Bioprinting of Biomaterials. Chemical Reviews, 2020, 120, 10793-10833.	47.7	332
9	In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Scientific Reports, 2019, 9, 1856.	3.3	297
10	Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication, 2009, 1, 035001.	7.1	153
11	Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnology and Bioengineering, 2004, 85, 29-33.	3.3	124
12	High-Throughput Production of Single-Cell Microparticles Using an Inkjet Printing Technology. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008, 130, .	2.2	102
13	Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Scientific Reports, 2017, 7, 1457.	3.3	100
14	Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. Biomaterials, 2009, 30, 4377-4383.	11.4	96
15	Inkjet-Mediated Gene Transfection into Living Cells Combined with Targeted Delivery. Tissue Engineering - Part A, 2009, 15, 95-101.	3.1	96
16	Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids and Surfaces B: Biointerfaces, 2018, 171, 291-299.	5.0	83
17	High throughput miniature drug-screening platform using bioprinting technology. Biofabrication, 2012, 4, 035001.	7.1	73
18	Preliminary engineering for <i>in situ in vivo</i> bioprinting: a novel micro bioprinting platform for <i>in situ in vivo</i> bioprinting at a gastric wound site. Biofabrication, 2020, 12, 045020.	7.1	47

ΤΑΟ Χυ

#	Article	IF	CITATIONS
19	3D bioprinted glioma cellâ€ l aden scaffolds enriching glioma stem cells via epithelial–mesenchymal transition. Journal of Biomedical Materials Research - Part A, 2019, 107, 383-391.	4.0	46
20	Characterization of Cell Constructs Generated With Inkjet Printing Technology Using In Vivo Magnetic Resonance Imaging. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008, 130, .	2.2	36
21	3D bioprinted rat Schwann cell-laden structures with shape flexibility and enhanced nerve growth factor expression. 3 Biotech, 2018, 8, 342.	2.2	29
22	Adaptive multiâ€degreeâ€ofâ€freedom in situ bioprinting robot for hairâ€follicleâ€inclusive skin repair: A preliminary study conducted in mice. Bioengineering and Translational Medicine, 2022, 7, .	7.1	21
23	Layer-by-layer printing of cells and its application to tissue engineering. Materials Research Society Symposia Proceedings, 2004, 845, 5.	0.1	14
24	A coaxially extruded heterogeneous core–shell fiber with Schwann cells and neural stem cells. International Journal of Energy Production and Management, 2020, 7, 131-139.	3.7	12
25	A scalable coaxial bioprinting technology for mesenchymal stem cell microfiber fabrication and high extracellular vesicle yield. Biofabrication, 2022, 14, 015012.	7.1	10
26	Fabricating Neural and Cardiomyogenic Stem Cell Structures by a Novel Rapid Prototyping—the Inkjet Printing Method. Materials Research Society Symposia Proceedings, 2004, 845, 30.	0.1	1
27	Bioprinting of Human Cord Blood-Derived CD34+ Cells and Exploration of the Multilineage Differentiation Ability in Vitro. ACS Biomaterials Science and Engineering, 2021, 7, 2592-2604.	5.2	1
28	Bioâ€printing of living organized tissues using an inkjet technology. FASEB Journal, 2007, 21, A636.	0.5	1
29	Three-Dimensional Tissue Printing Technology. Manuals in Biomedical Research, 2007, , 183-191.	0.0	0