Mahshid Kharaziha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163688/publications.pdf

Version: 2024-02-01

135

all docs

133 5,813 43 papers citations h-index

135

docs citations

h-index g-index

135 7397
times ranked citing authors

69

#	Article	IF	CITATIONS
1	Cisplatin loaded polycaprolactone – Zeolite nanocomposite scaffolds for bone cancer treatment. Journal of Science: Advanced Materials and Devices, 2022, 7, 100377.	1.5	5
2	Current knowledge of immunomodulation strategies for chronic skin wound repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 265-288.	1.6	15
3	Osteoconductive visible light-crosslinkable nanocomposite for hard tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127761.	2.3	12
4	Advances in the Sensing and Treatment of Wound Biofilms. Angewandte Chemie, 2022, 134, .	1.6	3
5	Advances in the Sensing and Treatment of Wound Biofilms. Angewandte Chemie - International Edition, 2022, 61, .	7.2	59
6	An aligned fibrous and thermosensitive hyaluronic acid-puramatrix interpenetrating polymer network hydrogel with mechanical properties adjusted for neural tissue. Journal of Materials Science, 2022, 57, 2883-2896.	1.7	5
7	Inspiring biomimetic system based on red blood cell membrane vesicles for effective curcumin loading and release. International Journal of Pharmaceutics, 2022, 613, 121419.	2.6	5
8	Synergic role of zinc and gallium doping in hydroxyapatite nanoparticles to improve osteogenesis and antibacterial activity. Materials Science and Engineering C, 2022, 134, 112684.	3.8	17
9	Smart poly(amidoamine) dendron-functionalized magnetic graphene oxide for cancer therapy. New Journal of Chemistry, 2022, 46, 5052-5064.	1.4	2
10	Development of an Injectable Shear-Thinning Nanocomposite Hydrogel for Cardiac Tissue Engineering. Gels, 2022, 8, 121.	2.1	11
11	Electrophoretic deposition of chitosan reinforced baghdadite ceramic nano-particles on the stainless steel 316L substrate to improve biological and physical characteristics. Materials Chemistry and Physics, 2022, 282, 125991.	2.0	7
12	Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2022, 11, e2200055.	3.9	28
13	Antimicrobial Synthetic and Natural Polymeric Nanofibers as Wound Dressing: A Review. Advanced Engineering Materials, 2022, 24, .	1.6	30
14	Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers, 2022, 14, 1709.	2.0	7
15	Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Advances in Colloid and Interface Science, 2022, 305, 102706.	7.0	21
16	The interaction studies of novel imine ligands and palladium(II) complexes with DNA and BSA for drug delivery application: The anti-cancer activity and molecular docking evaluation. Journal of Molecular Liquids, 2022, 362, 119493.	2.3	8
17	A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers, 2022, 14, 2238.	2.0	24
18	Polycaprolactone fumarate acts as an artificial neural network to promote the biological behavior of neural stem cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 246-256.	1.6	8

#	Article	IF	CITATIONS
19	The novel immobilization of G-quadruplex aptamer on Cu deposited surface using electrochemical method. Materials Letters, 2021, 282, 128703.	1.3	5
20	Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material. Carbohydrate Polymers, 2021, 251, 117013.	5.1	60
21	Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects. Materials Science and Engineering C, 2021, 120, 111611.	3.8	20
22	Polydopamine coated ZnO rod-shaped nanoparticles with noticeable biocompatibility, hemostatic and antibacterial activity. Nano Structures Nano Objects, 2021, 25, 100639.	1.9	31
23	An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. Polymer, 2021, 213, 123313.	1.8	41
24	Biodegradation evaluation of poly (lactic acid) for stent application: Role of mechanical tension and temperature. Journal of Applied Polymer Science, 2021, 138, 50389.	1.3	11
25	Additive Manufacturing of Polymer Matrix Composites. , 2021, , 1013-1028.		4
26	Gold Nano/Micro-Islands Overcome the Molecularly Imprinted Polymer Limitations to Achieve Ultrasensitive Protein Detection. ACS Sensors, 2021, 6, 797-807.	4.0	30
27	Transparent silk/gelatin methacrylate (GelMA) fibrillar film for corneal regeneration. Materials Science and Engineering C, 2021, 120, 111744.	3.8	44
28	3D printed microneedles for transdermal drug delivery: A brief review of two decades. International Journal of Pharmaceutics, 2021, 597, 120301.	2.6	48
29	<scp>Mechanical</scp> and biological performance of rainbow trout collagenâ€boron nitride nanocomposite scaffolds for soft tissue engineering. Journal of Applied Polymer Science, 2021, 138, 50664.	1.3	4
30	CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104320.	1.5	25
31	Effect of surface modification on physical and cellular properties of PCL thin film. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111582.	2.5	15
32	Recent Advances in Chemically-Modified and Hybrid Carrageenan-Based Platforms for Drug Delivery, Wound Healing, and Tissue Engineering. Polymers, 2021, 13, 1744.	2.0	48
33	Synthesis and characterization of the ternary graphene oxide, MnFe ₂ O ₄ nanoparticles, and Polyamidoamine dendrons nanocomposite decorated with palladium as a heterogeneous catalyst for nitroaromatics reduction. Applied Organometallic Chemistry, 2021, 35, e6329.	1.7	4
34	Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Tissue Engineering - Part A, 2021, 27, 679-702.	1.6	65
35	Shear-thinning and self-healing nanohybrid alginate-graphene oxide hydrogel based on guest-host assembly. International Journal of Biological Macromolecules, 2021, 180, 311-323.	3.6	16
36	A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone. Materials Science and Engineering C, 2021, 126, 112110.	3.8	20

3

#	Article	IF	CITATIONS
37	Robust and double-layer micro-patterned bioadhesive based on silk nanofibril/GelMA-alginate for stroma tissue engineering. International Journal of Biological Macromolecules, 2021, 183, 1013-1025.	3.6	25
38	Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Advanced Materials, 2021, 33, e2100176.	11.1	271
39	Advances in Triboelectric Nanogenerators for Selfâ€Powered Regenerative Medicine. Advanced Functional Materials, 2021, 31, 2105169.	7.8	54
40	Electrophoretic deposition of bioactive glass/zirconia core-shell nanoparticles on Ti6Al4V substrate. Ceramics International, 2021, 47, 34959-34969.	2.3	12
41	A mononuclear PdII complex with Naphcon; crystal structure, experimental and computational studies of the interaction with DNA/BSA and evaluation of anticancer activity. Polyhedron, 2021, 206, 115333.	1.0	10
42	Micro and nano-enabled approaches to improve the performance of plasma electrolytic oxidation coated magnesium alloys. Journal of Magnesium and Alloys, 2021, 9, 1487-1504.	5.5	44
43	The effect of zinc oxide coating morphology on corrosion performance of Ti-6Al-4ÂV alloys. Journal of Alloys and Compounds, 2021, 883, 160771.	2.8	15
44	Effect of pH on cisplatin encapsulated zeolite nanoparticles: Release mechanism and cytotoxicity. Materials Chemistry and Physics, 2021, 273, 124964.	2.0	5
45	Bilayer micro-arc oxidation-poly (glycerol sebacate) coating on AZ91 for improved corrosion resistance and biological activity. Progress in Organic Coatings, 2021, 161, 106495.	1.9	8
46	Structural and mechanical properties of fibrous poly (caprolactone)/gelatin nanocomposite incorporated with cellulose nanofibers. Polymer Bulletin, 2020, 77, 717-740.	1.7	20
47	Fabrication and characterization of polycaprolactone fumarate/gelatin-based nanocomposite incorporated with silicon and magnesium co-doped fluorapatite nanoparticles using electrospinning method. Materials Science and Engineering C, 2020, 106, 110172.	3.8	38
48	TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance. Talanta, 2020, 208, 120369.	2.9	47
49	Coreâ€"shell fibrous membranes of PVDFâ€"Ba _{0.9} Ca _{0.1} TiO ₃ /PVA with osteogenic and piezoelectric properties for bone regeneration. Biomedical Materials (Bristol), 2020, 15, 015007.	1.7	20
50	A non-enzymatic sensor based on three-dimensional graphene foam decorated with Cu-xCu2O nanoparticles for electrochemical detection of glucose and its application in human serum. Materials Science and Engineering C, 2020, 108, 110216.	3.8	72
51	An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant. Journal of Colloid and Interface Science, 2020, 564, 155-169.	5.0	122
52	Biomimetic Nylon 6-Baghdadite Nanocomposite Scaffold for Bone Tissue Engineering. Materials Science and Engineering C, 2020, 109, 110549.	3.8	28
53	Multifunctional plasma-sprayed nanocomposite coating based on FA-ZnO-GO with improved bioactivity and wear behaviour. Surface and Coatings Technology, 2020, 404, 126472.	2.2	10
54	Stable and Antibacterial Magnesium–Graphene Nanocomposite-Based Implants for Bone Repair. ACS Biomaterials Science and Engineering, 2020, 6, 6253-6262.	2.6	32

#	Article	IF	CITATIONS
55	Polycaprolactone/fluoride substituted-hydroxyapatite (PCL/FHA) nanocomposite coatings prepared by in-situ sol-gel process for dental implant applications. Progress in Organic Coatings, 2020, 147, 105873.	1.9	39
56	Electrochemical aspects of zinc oxide electrodeposition on Ti6Al4V alloy. Surface and Coatings Technology, 2020, 402, 126297.	2.2	11
57	In-Situ Synthesis and Characterization of Chitosan/Hydroxyapatite Nanocomposite Coatings to Improve the Bioactive Properties of Ti6Al4V Substrates. Materials, 2020, 13, 3772.	1.3	16
58	Recent Trends in Three-Dimensional Bioinks Based on Alginate for Biomedical Applications. Materials, 2020, 13, 3980.	1.3	49
59	Electrochemical and in vitro bioactivity behavior of poly (ε-caprolactone) (PCL)-gelatin-forsterite nano coating on titanium for biomedical application. Materials Today Communications, 2020, 24, 101326.	0.9	10
60	Triboelectric nanogenerators based on graphene oxide coated nanocomposite fibers for biomedical applications. Nanotechnology, 2020, 31, 385402.	1.3	45
61	Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. Materials, 2020, 13, 2663.	1.3	52
62	A multifunctional nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for diabetic wounds. Materials Science and Engineering C, 2020, 111, 110837.	3.8	62
63	In situ synthesis of fluorapatiteâ€ZnO nanocomposite powder via mechanical alloying for biomedical applications. International Journal of Applied Ceramic Technology, 2020, 17, 1998-2007.	1.1	2
64	Influence of copper on the structural, mechanical, and biological characteristics of Mg–1Al–Cu alloy. Materials Chemistry and Physics, 2019, 237, 121838.	2.0	16
65	Sprayable and injectable visible-light Kappa-carrageenan hydrogel for in-situ soft tissue engineering. International Journal of Biological Macromolecules, 2019, 138, 590-601.	3.6	63
66	Dexamethasone loaded Laponite \hat{A}^{\otimes} /porous calcium phosphate cement for treatment of bone defects. Biomedical Materials (Bristol), 2019, 14, 055008.	1.7	8
67	A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochimica Acta, 2019, 186, 773.	2.5	103
68	Chitosan-heparin nanoparticle coating on anodized NiTi for improvement of blood compatibility and biocompatibility. International Journal of Biological Macromolecules, 2019, 127, 159-168.	3.6	47
69	Biological and corrosion evaluation of Laponite $\hat{A}^{\text{@}}$: Poly(caprolactone) nanocomposite coating for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123945.	2.3	17
70	Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications. Surface and Coatings Technology, 2019, 362, 282-292.	2.2	40
71	(Ba Ca)TiO3 nanopowder: Synthesis and their electrical and biological characteristics. Materials Chemistry and Physics, 2019, 226, 263-271.	2.0	13
72	Double layer graphene oxide-PVP coatings on the textured Ti6Al4V for improvement of frictional and biological behavior. Surface and Coatings Technology, 2019, 374, 656-665.	2.2	19

#	Article	IF	CITATIONS
73	Luminescent Palladacycles Containing a Pyrene Chromophor; Synthesis, Biological and Computational Studies of the Interaction with DNA and BSA. ChemistrySelect, 2019, 4, 5126-5137.	0.7	9
74	Nano-featured poly (lactide-co-glycolide)-graphene microribbons as a promising substrate for nerve tissue engineering. Composites Part B: Engineering, 2019, 173, 106863.	5.9	28
75	An injectable mechanically robust hydrogel of Kappa-carrageenan-dopamine functionalized graphene oxide for promoting cell growth. Carbohydrate Polymers, 2019, 214, 234-249.	5.1	76
76	Silk-Laponite® fibrous membranes for bone tissue engineering. Applied Clay Science, 2019, 174, 90-99.	2.6	46
77	An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy, 2019, 59, 412-421.	8.2	142
78	Development of an in-situ chitosan‑copper nanoparticle coating by electrophoretic deposition. Surface and Coatings Technology, 2019, 364, 239-247.	2.2	46
79	Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Materials and Design, 2019, 167, 107636.	3.3	92
80	Role of Heat Treatment on the Fabrication and Electrochemical Property of Ordered TiO2 Nanotubular Layer on the As-Cast NiTi. Metals and Materials International, 2019, 25, 617-626.	1.8	9
81	Embedding CuO Nanoparticles in PDMS-SiO2 Coating to Improve Antibacterial Characteristic and Corrosion Resistance. Colloids and Interface Science Communications, 2019, 28, 20-28.	2.0	71
82	Ion-beam irradiation of DLC-based nanocomposite: Creation of a highly biocompatible surface. Applied Surface Science, 2019, 469, 896-903.	3.1	19
83	Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics. Materials Science and Engineering C, 2019, 98, 140-152.	3.8	82
84	Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties. Applied Surface Science, 2018, 441, 138-149.	3.1	65
85	Anisotropic architecture and electrical stimulation enhance neuron cell behaviour on a tough graphene embedded PVA: alginate fibrous scaffold. RSC Advances, 2018, 8, 6381-6389.	1.7	37
86	Green reduction of graphene oxide by ascorbic acid. AIP Conference Proceedings, 2018, , .	0.3	26
87	Gelatin methacryloyl hydrogel for glucose biosensing using Ni nanoparticles-reduced graphene oxide: An experimental and modeling study. Electrochimica Acta, 2018, 261, 275-283.	2.6	36
88	Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2371-2383.	1.6	14
89	Fabrication and characterization of laponite-calcium phosphate based cement for filling bone defects. Materials Today: Proceedings, 2018, 5, 15754-15760.	0.9	5
90	Design and characterization of poly- $\hat{l}\mu$ -caprolactone electrospun fibers incorporated with $\hat{l}\pm$ -TCP nanopowder as a potential guided bone regeneration membrane. Materials Today: Proceedings, 2018, 5, 15783-15789.	0.9	5

#	Article	IF	Citations
91	Antibacterial chitosan-copper nanocomposite coatings for biomedical applications. Materials Today: Proceedings, 2018, 5, 15806-15812.	0.9	21
92	A three-layered hollow tubular scaffold as an enhancement of nerve regeneration potential. Biomedical Materials (Bristol), 2018, 13, 065005.	1.7	12
93	Hemocompatible and Bioactive Heparinâ€Loaded PCLâ€Î±â€TCP Fibrous Membranes for Bone Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800020.	2.1	25
94	Modulation of the mechanical, physical and chemical properties of polyvinylidene fluoride scaffold via non-solvent induced phase separation process for nerve tissue engineering applications. European Polymer Journal, 2018, 104, 115-127.	2.6	32
95	pH sensitive dexamethasone encapsulated laponite nanoplatelets: Release mechanism and cytotoxicity. International Journal of Pharmaceutics, 2017, 518, 312-319.	2.6	53
96	Ni nanoparticle-decorated reduced graphene oxide for non-enzymatic glucose sensing: An experimental and modeling study. Electrochimica Acta, 2017, 240, 388-398.	2.6	50
97	A facile one-step strategy for development of a double network fibrous scaffold for nerve tissue engineering. Biofabrication, 2017, 9, 025008.	3.7	41
98	Electrochemical and in vitro bioactivity of nanocomposite gelatin-forsterite coatings on AISI 316 L stainless steel. Progress in Organic Coatings, 2017, 103, 40-47.	1.9	43
99	Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application. Materials Science and Engineering C, 2017, 80, 75-87.	3.8	84
100	Sr-doped forsterite nanopowder: Synthesis and biological properties. Ceramics International, 2017, 43, 12018-12025.	2.3	18
101	Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Materials Science and Engineering C, 2017, 78, 47-58.	3.8	64
102	Surface modification of PCL-diopside fibrous membrane via gelatin immobilization for bone tissue engineering. Materials Chemistry and Physics, 2017, 194, 356-366.	2.0	28
103	Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy. Carbohydrate Polymers, 2017, 167, 185-195.	5.1	28
104	Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. Carbohydrate Polymers, 2017, 176, 392-401.	5.1	189
105	Combinational processing of 3D printing and electrospinning of hierarchical poly(lactic) Tj ETQq1 1 0.784314 rgB and Design, 2017, 133, 128-135.	T /Overlock 3.3	k 10 Tf 50 101
106	Nano‑calcium phosphate bone cement based on Si-stabilized α-tricalcium phosphate with improved mechanical properties. Materials Science and Engineering C, 2017, 81, 532-541.	3.8	23
107	Tough and conductive hybrid graphene-PVA: Alginate fibrous scaffolds for engineering neural construct. Carbon, 2017, 111, 752-763.	5.4	166
108	Reinforcement of electrospun poly(εâ€caprolactone) scaffold using diopside nanopowder to promote biological and physical properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	25

#	Article	IF	CITATIONS
109	Synthesis, characterization and inÂvitro behavior of nanostructured diopside/biphasic calcium phosphate scaffolds. Materials Chemistry and Physics, 2017, 186, 415-425.	2.0	28
110	Nanoâ€Enabled Approaches for Stem Cellâ€Based Cardiac Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1533-1553.	3.9	50
111	Corrosion and bioactivity evaluation of nanocomposite PCL-forsterite coating applied on 316L stainless steel. Surface and Coatings Technology, 2016, 307, 324-331.	2.2	43
112	Tissue Engineering: Nanoâ€Enabled Approaches for Stem Cellâ€Based Cardiac Tissue Engineering(Adv.) Tj ETQq	0 0 0 rgBT	/Oyerlock 10
113	Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration. Materials Science and Engineering C, 2016, 68, 603-612.	3.8	41
114	PCL-forsterite nanocomposite fibrous membranes for controlled release of dexamethasone. Journal of Materials Science: Materials in Medicine, 2015, 26, 5364.	1.7	26
115	Microfabrication of Cell-Laden Hydrogels for Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, 2015, 881, 15-31.	0.8	4
116	Electrospun PGS:PCL Microfibers Align Human Valvular Interstitial Cells and Provide Tunable Scaffold Anisotropy. Advanced Healthcare Materials, 2014, 3, 929-939.	3.9	95
117	Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials, 2014, 35, 7774-7785.	5.7	131
118	Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials, 2014, 35, 7346-7354.	5.7	249
119	PGS:Gelatin nanofibrous scaffolds with tunable mechanical andÂstructural properties for engineering cardiac tissues. Biomaterials, 2013, 34, 6355-6366.	5.7	273
120	Chitin nanofiber micropatterned flexible substrates for tissue engineering. Journal of Materials Chemistry B, 2013, 1, 4217.	2.9	68
121	Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications. Materials Science and Engineering C, 2013, 33, 4512-4519.	3.8	31
122	Tunable cellular interactions and physical properties of nanofibrous PCL-forsterite:gelatin scaffold through sequential electrospinning. Composites Science and Technology, 2013, 87, 182-188.	3.8	33
123	Novel Fluorapatiteâ€Forsterite Nanocomposite Powder for Oral Bone Defects. International Journal of Applied Ceramic Technology, 2013, 10, E282.	1.1	12
124	Development of novel aligned nanofibrous composite membranes for guided bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 24, 9-20.	1.5	79
125	Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Composites Science and Technology, 2012, 72, 716-723.	3.8	101
126	Novel forsterite/polycaprolactone nanocomposite scaffold for tissue engineering applications. Materials Letters, 2011, 65, 1931-1934.	1.3	55

#	Article	IF	CITATION
127	Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 530-537.	1.5	99
128	Nanostructured Forsterite Coating Strengthens Porous Hydroxyapatite for Bone Tissue Engineering. Journal of the American Ceramic Society, 2010, 93, 2679-2683.	1.9	34
129	Two-step sintering of dense, nanostructural forsterite. Materials Letters, 2009, 63, 1455-1458.	1.3	86
130	Synthesis and characterization of bioactive forsterite nanopowder. Ceramics International, 2009, 35, 2449-2454.	2.3	150
131	The effect of fluorine ion on fabrication of nanostructure forsterite during mechanochemical synthesis. Journal of Alloys and Compounds, 2009, 472, 540-545.	2.8	30
132	Mechanically activated crystallization of phase pure nanocrystalline forsterite powders. Materials Letters, 2008, 62, 4306-4309.	1.3	59
133	MECHANOCHEMICAL SYNTHESIS AND CHARACTERIZATION OF NANOSTRUCTURE FORSTERITE BIOCERAMICS. International Journal of Modern Physics B, 2008, 22, 3082-3091.	1.0	13