## Daniele Cangialosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163675/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High throughput optimization procedure to characterize vitrification kinetics. Thermochimica Acta, 2022, 707, 179084.                                                                   | 1.2  | 10        |
| 2  | Bio-based semi-crystalline PEF: Temperature dependence of the constrained amorphous interphase and amorphous chain mobility in relation to crystallization. Polymer, 2022, 247, 124771. | 1.8  | 8         |
| 3  | Decoupling of Glassy Dynamics from Viscosity in Thin Supported Poly( <i>n</i> -butyl methacrylate)<br>Films. ACS Polymers Au, 2022, 2, 333-340.                                         | 1.7  | 6         |
| 4  | Vitrification and Physical Aging in Polymer Glasses by Broadband Dielectric Spectroscopy. ACS<br>Symposium Series, 2021, , 133-156.                                                     | 0.5  | 3         |
| 5  | Gold nanoparticles endowed with low-temperature colloidal stability by cyclic polyethylene glycol in ethanol. Soft Matter, 2021, 17, 7792-7801.                                         | 1.2  | 7         |
| 6  | Enhanced Free Surface Mobility Facilitates the Release of Free-Volume Holes in Thin-Film Polymer<br>Glasses. Macromolecules, 2021, 54, 2022-2028.                                       | 2.2  | 14        |
| 7  | Physical Aging Behavior of a Glassy Polyether. Polymers, 2021, 13, 954.                                                                                                                 | 2.0  | 23        |
| 8  | Reaching the Ideal Glass in Polymer Spheres: Thermodynamics and Vibrational Density of States.<br>Physical Review Letters, 2021, 126, 118004.                                           | 2.9  | 19        |
| 9  | Polymorphism in Nonâ€Fullerene Acceptors Based on Indacenodithienothiophene. Advanced Functional<br>Materials, 2021, 31, 2103784.                                                       | 7.8  | 33        |
| 10 | Glass transition and aging of the rigid amorphous fraction in polymorphic poly(butene-1). Polymer, 2021, 226, 123830.                                                                   | 1.8  | 5         |
| 11 | Direct Visualization and Characterization of Interfacially Adsorbed Polymer atop Nanoparticles and within Nanocomposites. Macromolecules, 2021, 54, 10224-10234.                        | 2.2  | 14        |
| 12 | The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar<br>Cells. Advanced Materials, 2020, 32, e2005241.                                      | 11.1 | 21        |
| 13 | Physical Aging and Glass Transition of the Rigid Amorphous Fraction in Poly(l-lactic acid).<br>Macromolecules, 2020, 53, 8741-8750.                                                     | 2.2  | 34        |
| 14 | Direct observation of desorption of a melt of long polymer chains. Nature Communications, 2020, 11, 4354.                                                                               | 5.8  | 27        |
| 15 | Single-chain nanoparticles: opportunities provided by internal and external confinement. Materials<br>Horizons, 2020, 7, 2292-2313.                                                     | 6.4  | 72        |
| 16 | Vitrification decoupling from α-relaxation in a metallic glass. Science Advances, 2020, 6, eaay1454.                                                                                    | 4.7  | 54        |
| 17 | Tunable Properties of MAPLE-Deposited Thin Films in the Presence of Suppressed Segmental Dynamics. ACS Macro Letters, 2019, 8, 1115-1121.                                               | 2.3  | 9         |
| 18 | Shell Architecture Strongly Influences the Glass Transition, Surface Mobility, and Elasticity of Polymer Core-Shell Nanoparticles. Macromolecules, 2019, 52, 5399-5406.                 | 2.2  | 22        |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Processing Pathways Decide Polymer Properties at the Molecular Level. Macromolecules, 2019, 52, 7146-7156.                                                                             | 2.2  | 105       |
| 20 | Glassy Dynamics of an All-Polymer Nanocomposite Based on Polystyrene Single-Chain Nanoparticles.<br>Macromolecules, 2019, 52, 6868-6877.                                               | 2.2  | 13        |
| 21 | Effect of molecular weight on vitrification kinetics and molecular mobility of a polymer glass confined at the microscale. Thermochimica Acta, 2019, 677, 60-66.                       | 1.2  | 13        |
| 22 | Synthesis of macrocyclic poly(ethylene oxide)s containing a protected thiol group: a strategy for decorating gold surfaces with ring polymers. Polymer Chemistry, 2019, 10, 6495-6504. | 1.9  | 6         |
| 23 | Chapter 8. Glass Transition and Crystallization in Colloidal Polymer Nanoparticles. RSC Soft Matter, 2019, , 263-288.                                                                  | 0.2  | 0         |
| 24 | Double Mechanism for Structural Recovery of Polystyrene Nanospheres. Macromolecules, 2018, 51, 3299-3307.                                                                              | 2.2  | 23        |
| 25 | The very long-term physical aging of glassy polymers. Physical Chemistry Chemical Physics, 2018, 20, 12356-12361.                                                                      | 1.3  | 52        |
| 26 | Direct Calorimetric Observation of the Rigid Amorphous Fraction in a Semiconducting Polymer.<br>Journal of Physical Chemistry Letters, 2018, 9, 990-995.                               | 2.1  | 61        |
| 27 | Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former. Acta Materialia, 2018, 144, 400-410.                                | 3.8  | 86        |
| 28 | Thermodynamic Ultrastability of a Polymer Glass Confined at the Micrometer Length Scale. Physical<br>Review Letters, 2018, 121, 137801.                                                | 2.9  | 41        |
| 29 | Glass Transition and Physical Aging of Confined Polymers Investigated by Calorimetric Techniques.<br>Handbook of Thermal Analysis and Calorimetry, 2018, , 301-337.                    | 1.6  | 8         |
| 30 | Complex nonequilibrium dynamics of stacked polystyrene films deep in the glassy state. Journal of<br>Chemical Physics, 2017, 146, 203312.                                              | 1.2  | 33        |
| 31 | Irreversible Adsorption Erases the Free Surface Effect on the <i>T</i> <sub>g</sub> of Supported Films of Poly(4- <i>tert</i> -butylstyrene). ACS Macro Letters, 2017, 6, 354-358.     | 2.3  | 91        |
| 32 | Reaching the ideal glass transition by aging polymer films. Physical Chemistry Chemical Physics, 2017, 19, 961-965.                                                                    | 1.3  | 44        |
| 33 | Glass Transition and Molecular Dynamics in Polystyrene Nanospheres by Fast Scanning Calorimetry.<br>ACS Macro Letters, 2017, 6, 859-863.                                               | 2.3  | 59        |
| 34 | Cooling Rate Dependent Glass Transition in Thin Polymer Films and in Bulk. , 2016, , 403-431.                                                                                          |      | 21        |
| 35 | Direct Measurement of Glass Transition Temperature in Exposed and Buried Adsorbed Polymer Nanolayers. Macromolecules, 2016, 49, 4647-4655.                                             | 2.2  | 100       |
| 36 | Effect of nanostructure on the thermal glass transition and physical aging in polymer materials.<br>Progress in Polymer Science, 2016, 54-55, 128-147.                                 | 11.8 | 123       |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of Confinement Geometry on Out-of-Equilibrium Glassy Dynamics. Soft and Biological Matter, 2015, , 265-298.                                                                                                  | 0.3 | 4         |
| 38 | On the equivalence between the thermodynamic and dynamic measurements of the glass transition in confined polymers. Journal of Non-Crystalline Solids, 2015, 407, 288-295.                                          | 1.5 | 123       |
| 39 | Dynamics and thermodynamics of polymer glasses. Journal of Physics Condensed Matter, 2014, 26, 153101.                                                                                                              | 0.7 | 92        |
| 40 | Accounting for the thickness dependence of the Tg in supported PS films via the volume holes diffusion model. Thermochimica Acta, 2014, 575, 233-237.                                                               | 1.2 | 33        |
| 41 | Equilibrium and Out-of-Equilibrium Dynamics in Confined Polymers and Other Glass Forming Systems<br>by Dielectric Spectroscopy and Calorimetric Techniques. Advances in Dielectrics, 2014, , 339-361.               | 1.2 | 4         |
| 42 | Direct Evidence of Two Equilibration Mechanisms in Glassy Polymers. Physical Review Letters, 2013, 111,<br>095701.                                                                                                  | 2.9 | 166       |
| 43 | Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft<br>Matter, 2013, 9, 8619.                                                                                            | 1.2 | 206       |
| 44 | Interfacial Free Volume and Vitrification: Reduction in <i>T</i> <sub>g</sub> in Proximity of an<br>Adsorbing Interface Explained by the Free Volume Holes Diffusion Model. Macromolecules, 2013, 46,<br>8051-8053. | 2.2 | 82        |
| 45 | Correlation Between Segmental Dynamics, Glass Transition, and Lithium Ion Conduction in<br>Poly(Methyl Methacrylate)/Ionic Liquid Mixture. Journal of Macromolecular Science - Physics, 2013, 52,<br>590-603.       | 0.4 | 3         |
| 46 | Mobility and glass transition temperature of polymer nanospheres. Polymer, 2013, 54, 230-235.                                                                                                                       | 1.8 | 64        |
| 47 | Glass transition and segmental dynamics in thin supported polystyrene films: The role of molecular weight and annealing. Thermochimica Acta, 2013, 566, 186-192.                                                    | 1.2 | 42        |
| 48 | Volume recovery of polystyrene/silica nanocomposites. Journal of Polymer Science, Part B: Polymer<br>Physics, 2013, 51, 847-853.                                                                                    | 2.4 | 15        |
| 49 | Time dependence of the segmental relaxation time of poly(vinyl acetate)-silica nanocomposites.<br>Physical Review E, 2012, 86, 041501.                                                                              | 0.8 | 34        |
| 50 | Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter, 2012, 8, 5119.                                                                                                               | 1.2 | 173       |
| 51 | Enthalpy Recovery in Nanometer to Micrometer Thick Polystyrene Films. Macromolecules, 2012, 45, 5296-5306.                                                                                                          | 2.2 | 86        |
| 52 | Positron annihilation and relaxation dynamics from dielectric spectroscopy: poly(vinylmethylether).<br>Journal of Physics Condensed Matter, 2012, 24, 155104.                                                       | 0.7 | 13        |
| 53 | Enhanced physical aging of polymer nanocomposites: The key role of the area to volume ratio.<br>Polymer, 2012, 53, 1362-1372.                                                                                       | 1.8 | 63        |
| 54 | Enthalpy Recovery of Glassy Polymers: Dramatic Deviations from the Extrapolated Liquidlike Behavior.<br>Macromolecules, 2011, 44, 8333-8342.                                                                        | 2.2 | 95        |

4

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric Tg depression.<br>Soft Matter, 2011, 7, 3607.                                | 1.2 | 89        |
| 56 | Physical aging in PMMA/silica nanocomposites: Enthalpy and dielectric relaxation. Journal of Non-Crystalline Solids, 2011, 357, 605-609.                            | 1.5 | 35        |
| 57 | Free volume holes diffusion to describe physical aging in poly(mehtyl methacrylate)/silica nanocomposites. Journal of Chemical Physics, 2011, 135, 014901.          | 1.2 | 62        |
| 58 | Universal relation between viscous flow and fast dynamics in glass-forming materials. Physical<br>Review B, 2010, 81, .                                             | 1.1 | 34        |
| 59 | Effect of silica particles concentration on the physical aging of PMMAâ^•silica nanocomposites. AIP<br>Conference Proceedings, 2010, , .                            | 0.3 | 7         |
| 60 | Enthalpy Recovery of PMMA/Silica Nanocomposites. Macromolecules, 2010, 43, 7594-7603.                                                                               | 2.2 | 63        |
| 61 | Accelerated physical aging in PMMA/silica nanocomposites. Soft Matter, 2010, 6, 3306.                                                                               | 1.2 | 72        |
| 62 | Dynamical heterogeneity in binary mixtures of low-molecular-weight glass formers. Physical Review E,<br>2009, 80, 041505.                                           | 0.8 | 17        |
| 63 | On the temperature dependence of the nonexponentiality in glass-forming liquids. Journal of Chemical Physics, 2009, 130, 124902.                                    | 1.2 | 36        |
| 64 | Miscible Polymer Blends with Large Dynamical Asymmetry:  A New Class of Solid-State Electrolytes?.<br>Macromolecules, 2008, 41, 1565-1569.                          | 2.2 | 7         |
| 65 | Dielectric relaxation of polychlorinated biphenyl/toluene mixtures: Component dynamics. Journal of<br>Chemical Physics, 2008, 128, 224508.                          | 1.2 | 23        |
| 66 | Comment on "Vibrational and configurational parts of the specific heat at glass formation― Physical<br>Review B, 2008, 78, .                                        | 1.1 | 4         |
| 67 | "Self-concentration―effects on the dynamics of a polychlorinated biphenyl diluted in<br>1,4-polybutadiene. Journal of Chemical Physics, 2007, 126, 204904.          | 1.2 | 31        |
| 68 | Route to calculate the length scale for the glass transition in polymers. Physical Review E, 2007, 76, 011514.                                                      | 0.8 | 65        |
| 69 | Describing the component dynamics in miscible polymer blends: Towards a fully predictive model.<br>Journal of Chemical Physics, 2006, 124, 154904.                  | 1.2 | 23        |
| 70 | Predicting the Time Scale of the Component Dynamics of Miscible Polymer Blends:Â The<br>Polyisoprene/Poly(vinylethylene) Case. Macromolecules, 2006, 39, 7149-7156. | 2.2 | 32        |
| 71 | Modeling the Dynamics of Head-to-Head Polypropylene in Blends with Polyisobutylene.<br>Macromolecules, 2006, 39, 448-450.                                           | 2.2 | 8         |
| 72 | A Wavelength-Shifting Fluorescent Probe for Investigating Physical Aging. Macromolecules, 2006, 39, 224-231.                                                        | 2.2 | 29        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A thermodynamic approach to the fragility of glass-forming polymers. Journal of Chemical Physics, 2006, 124, 024906.                                                                                     | 1.2 | 43        |
| 74 | Relationship between dynamics and thermodynamics in glass-forming polymers. Europhysics Letters, 2005, 70, 614-620.                                                                                      | 0.7 | 57        |
| 75 | Amorphous-amorphous transition in glassy polymers subjected to cold rolling studied by means of positron annihilation lifetime spectroscopy. Journal of Chemical Physics, 2005, 122, 064702.             | 1.2 | 23        |
| 76 | Diffusion mechanism for physical aging of polycarbonate far below the glass transition temperature studied by means of dielectric spectroscopy. Journal of Non-Crystalline Solids, 2005, 351, 2605-2610. | 1.5 | 33        |
| 77 | Combining configurational entropy and self-concentration to describe the component dynamics in miscible polymer blends. Journal of Chemical Physics, 2005, 123, 144908.                                  | 1.2 | 52        |
| 78 | Relaxation of Free Volume in Polycarbonate and Polystyrene Studied by Positron Annihilation Lifetime<br>Spectroscopy. Acta Physica Polonica A, 2005, 107, 690-696.                                       | 0.2 | 7         |
| 79 | Dynamics of polycarbonate far below the glass transition temperature: $\hat{a} \in f A$ positron annihilation lifetime study. Physical Review B, 2004, 69, .                                             | 1.1 | 38        |
| 80 | Positron Annihilation Lifetime Spectroscopy to Study the Structural Relaxation of PC Far Below the Glass Transition Temperature. Materials Science Forum, 2004, 445-446, 271-273.                        | 0.3 | 2         |
| 81 | Hybrid organic inorganic nylon-6/SiO2nanocomposites: Transport properties. Polymer Engineering and Science, 2004, 44, 1240-1246.                                                                         | 1.5 | 36        |
| 82 | Submicron structured polymethyl methacrylate/acrylonitrile-butadiene rubber blends obtained via gamma radiation induced ?in situ? polymerization. Advances in Polymer Technology, 2004, 23, 211-221.     | 0.8 | 4         |
| 83 | Physical aging of polycarbonate far below the glass transition temperature: Evidence for the diffusion mechanism. Physical Review B, 2004, 70, .                                                         | 1.1 | 66        |
| 84 | Mobility and solubility of antioxidants and oxygen in glassy polymers II. Influence of physical ageing on antioxidant and oxygen mobility. Polymer Degradation and Stability, 2003, 79, 427-438.         | 2.7 | 24        |
| 85 | Accumulation of charges in polycarbonate due to positron irradiation. Radiation Physics and Chemistry, 2003, 68, 507-510.                                                                                | 1.4 | 14        |
| 86 | Mobility and solubility of antioxidants and oxygen in glassy polymers. III. Influence of deformation and orientation on oxygen permeability. Polymer, 2003, 44, 2463-2471.                               | 1.8 | 25        |
| 87 | Positron Annihilation Lifetime Spectroscopy for Measuring Free Volume during Physical Aging of Polycarbonate. Macromolecules, 2003, 36, 142-147.                                                         | 2.2 | 84        |
| 88 | Electron beam induced polymerisation of MMA in the presence of rubber: a novel process to produce tough materials. Radiation Physics and Chemistry, 2002, 63, 63-68.                                     | 1.4 | 5         |
| 89 | Study of methyl methacrylate polymerization in the presence of rubbers. European Polymer Journal, 2001, 37, 535-539.                                                                                     | 2.6 | 12        |
| 90 | Properties and morphology of PMMA/ABN blends obtained via MMA in situ polymerisation through<br>γ-rays. Nuclear Instruments & Methods in Physics Research B, 2001, 185, 262-266.                         | 0.6 | 10        |

| #  | ARTICLE                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Comment on "Anomalous structural recovery in the near glass transition range in a polymer glass:<br>Data revisited in light of temperature variability in vacuum ovenâ€based experiments― Polymer<br>Engineering and Science, 0, , . | 1.5 | 1         |