Bruno G Lucca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163634/publications.pdf

Version: 2024-02-01

713332 516561 28 478 16 21 h-index citations g-index papers 28 28 28 520 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stamping method based on 3D printing and disposable napkin: Cheap production of paper analytical devices for alcohol determination in beverages aiming forensics and food control. Microchemical Journal, 2022, 180, 107604.	2.3	4
2	A novel 3D-printed batch injection analysis (BIA) cell coupled to paper-based electrochemical devices: A cheap and reliable analytical system for fast on-site analysis. Microchemical Journal, 2022, 179, 107663.	2.3	6
3	Development of novel paper-based electrochemical device modified with CdSe/CdS magic-sized quantum dots and application for the sensing of dopamine. Electrochimica Acta, 2021, 367, 137486.	2.6	38
4	A novel all-3D-printed thread-based microfluidic device with an embedded electrochemical detector: first application in environmental analysis of nitrite. Analytical Methods, 2021, 13, 1349-1357.	1.3	19
5	Development of highly sensitive electrochemical sensor using new graphite/acrylonitrile butadiene styrene conductive composite and 3D printing-based alternative fabrication protocol. Analytica Chimica Acta, 2021, 1167, 338566.	2.6	17
6	Multi sensor compatible 3D-printed electrochemical cell for voltammetric drug screening. Analytica Chimica Acta, 2021, 1169, 338568.	2.6	25
7	Simple, fast, and instrumentless fabrication of paper analytical devices by novel contact stamping method based on acrylic varnish and 3D printing. Mikrochimica Acta, 2021, 188, 437.	2.5	8
8	Design of novel, simple, and inexpensive 3D printingâ€based miniaturized electrochemical platform containing embedded disposable detector for analytical applications. Electrophoresis, 2020, 41, 278-286.	1.3	20
9	Electrochemical study and simultaneous voltammetric determination of contraceptives ethinylestradiol and cyproterone acetate using silver nanoparticles solid amalgam electrode and cationic surfactant. Talanta, 2020, 210, 120610.	2.9	16
10	Easy and rapid pen-on-paper protocol for fabrication of paper analytical devices using inexpensive acrylate-based plastic welding repair kit. Talanta, 2020, 219, 121246.	2.9	18
11	Voltammetric study and electroanalytical determination of contraceptive levonorgestrel using silver solid amalgam electrode fabricated with nanoparticles. International Journal of Environmental Analytical Chemistry, 2019, 99, 397-408.	1.8	3
12	Rapid and inexpensive method for the simple fabrication of PDMSâ€based electrochemical sensors for detection in microfluidic devices. Electrophoresis, 2019, 40, 1322-1330.	1.3	21
13	Electrochemical study and voltammetric determination of sodium diethyldithiocarbamate using silver nanoparticles solid amalgam electrode. International Journal of Environmental Analytical Chemistry, 2018, 98, 859-873.	1.8	7
14	Recent advances in toner-based microfluidic devices for bioanalytical applications. Analytical Methods, 2018, 10, 2952-2962.	1.3	20
15	Simple and Inexpensive Electrochemical Platform Based on Novel Homemade Carbon Ink and its Analytical Application for Determination of Nitrite. Electroanalysis, 2017, 29, 1762-1771.	1.5	19
16	Voltammetric determination of insecticide thiodicarb through its electrochemical reduction using novel solid amalgam electrode fabricated with silver nanoparticles. Electrochimica Acta, 2017, 246, 748-756.	2.6	9
17	Voltammetric determination of herbicide molinate in river water and rice samples using solid silver amalgam electrode fabricated with nanoparticles. International Journal of Environmental Analytical Chemistry, 2017, 97, 468-483.	1.8	6
18	Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis. Analytica Chimica Acta, 2017, 954, 88-96.	2.6	30

#	Article	IF	CITATION
19	Pencil graphite leads as simple amperometric sensors for microchip electrophoresis. Electrophoresis, 2017, 38, 2733-2740.	1.3	15
20	Paperâ€based Electrochemical Devices Coupled to External Grapheneâ€Cu Nanoparticles Modified Solid Electrode through Meniscus Configuration and their Use in Biological Analysis. Electroanalysis, 2017, 29, 2628-2637.	1.5	24
21	Sensitive Approach for Voltammetric Determination of Carbendazim Based on the Use of an Anionic Surfactant. Electroanalysis, 2016, 28, 1362-1369.	1.5	31
22	Electrodeposition of reduced graphene oxide on a Pt electrode and its use as amperometric sensor in microchip electrophoresis. Electrophoresis, 2015, 36, 1886-1893.	1.3	24
23	Onâ€Site Determination of Carbendazim, Cathecol and Hydroquinone in Tap Water Using a Homemade Batch Injection Analysis Cell for Screen Printed Electrodes. Electroanalysis, 2015, 27, 271-275.	1.5	17
24	Separation of natural antioxidants using PDMS electrophoresis microchips coupled with amperometric detection and reverse polarity. Electrophoresis, 2014, 35, 3363-3370.	1.3	16
25	Biosensor based on pequi polyphenol oxidase immobilized on chitosan crosslinked with cyanuric chloride for thiodicarb determination. Enzyme and Microbial Technology, 2010, 47, 153-158.	1.6	33
26	Determination of thiodicarb using a biosensor based on alfalfa sprout peroxidase immobilized in self-assembled monolayers. Talanta, 2010, 82, 164-170.	2.9	32
27	Sensor Surface Design with NanoMaterials: A New Platform in the Diagnosis of COVID-19. , 0, , .		0
28	NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications. , 0, , .		0