## Shota Atsumi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163515/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451, 86-89.                                                                                                        | 27.8 | 1,696     |
| 2  | Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology, 2009, 27, 1177-1180.                                                                                                       | 17.5 | 769       |
| 3  | Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 2008, 10,<br>305-311.                                                                                                        | 7.0  | 764       |
| 4  | Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1249-1254.                                                   | 7.1  | 341       |
| 5  | Metabolic engineering for advanced biofuels production from Escherichia coli. Current Opinion in<br>Biotechnology, 2008, 19, 414-419.                                                                                   | 6.6  | 275       |
| 6  | Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde<br>reductase/alcohol dehydrogenase genes. Applied Microbiology and Biotechnology, 2010, 85, 651-657.                | 3.6  | 270       |
| 7  | Evolution, genomic analysis, and reconstruction of isobutanol tolerance in <i>Escherichia coli</i> .<br>Molecular Systems Biology, 2010, 6, 449.                                                                        | 7.2  | 252       |
| 8  | Engineered Synthetic Pathway for Isopropanol Production in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2007, 73, 7814-7818.                                                                       | 3.1  | 251       |
| 9  | Cyanobacterial biofuel production. Journal of Biotechnology, 2012, 162, 50-56.                                                                                                                                          | 3.8  | 243       |
| 10 | Directed Evolution of <i>Methanococcus jannaschii</i> Citramalate Synthase for Biosynthesis of<br>1-Propanol and 1-Butanol by <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2008, 74,<br>7802-7808. | 3.1  | 226       |
| 11 | Expanding ester biosynthesis in Escherichia coli. Nature Chemical Biology, 2014, 10, 259-265.                                                                                                                           | 8.0  | 179       |
| 12 | Cyanobacteria as a Platform for Biofuel Production. Frontiers in Bioengineering and Biotechnology, 2013, 1, 7.                                                                                                          | 4.1  | 172       |
| 13 | Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.<br>Nature Communications, 2017, 8, 14724.                                                                                 | 12.8 | 159       |
| 14 | Synthetic Biology and Metabolic Engineering Approaches To Produce Biofuels. Chemical Reviews, 2013,<br>113, 4611-4632.                                                                                                  | 47.7 | 155       |
| 15 | Cyanobacterial metabolic engineering for biofuel and chemical production. Current Opinion in<br>Chemical Biology, 2016, 35, 43-50.                                                                                      | 6.1  | 143       |
| 16 | Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metabolic Engineering, 2013, 20, 101-108.                                                           | 7.0  | 128       |
| 17 | Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.<br>Metabolic Engineering, 2014, 25, 227-237.                                                                         | 7.0  | 121       |
| 18 | Metabolic design for cyanobacterial chemical synthesis. Photosynthesis Research, 2014, 120, 249-261.                                                                                                                    | 2.9  | 118       |

**SHOTA ATSUMI** 

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity.<br>Microbial Cell Factories, 2012, 11, 90.                                                                                       | 4.0  | 103       |
| 20 | Microbial production of scent and flavor compounds. Current Opinion in Biotechnology, 2016, 37, 8-15.                                                                                                                       | 6.6  | 103       |
| 21 | Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metabolic Engineering, 2014, 22, 76-82.                                                                                                             | 7.0  | 98        |
| 22 | Acetolactate Synthase from <i>Bacillus subtilis</i> Serves as a 2-Ketoisovalerate Decarboxylase for<br>Isobutanol Biosynthesis in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2009, 75,<br>6306-6311. | 3.1  | 92        |
| 23 | Electrical-biological hybrid system for CO2 reduction. Metabolic Engineering, 2018, 47, 211-218.                                                                                                                            | 7.0  | 83        |
| 24 | Engineering Synechococcus elongatus PCC 7942 for Continuous Growth under Diurnal Conditions.<br>Applied and Environmental Microbiology, 2013, 79, 1668-1675.                                                                | 3.1  | 71        |
| 25 | A carbon sink pathway increases carbon productivity in cyanobacteria. Metabolic Engineering, 2015, 29,<br>106-112.                                                                                                          | 7.0  | 66        |
| 26 | Synthetic Biology Guides Biofuel Production. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.                                                                                                                     | 3.0  | 59        |
| 27 | Metabolic engineering tools in model cyanobacteria. Metabolic Engineering, 2018, 50, 47-56.                                                                                                                                 | 7.0  | 57        |
| 28 | Recent progress in synthetic biology for microbial production of C3–C10 alcohols. Frontiers in<br>Microbiology, 2012, 3, 196.                                                                                               | 3.5  | 51        |
| 29 | Biological Production of 2â€Butanone in <i>Escherichia coli</i> . ChemSusChem, 2014, 7, 92-95.                                                                                                                              | 6.8  | 50        |
| 30 | Cyanobacterial chemical production. Journal of Biotechnology, 2016, 231, 106-114.                                                                                                                                           | 3.8  | 48        |
| 31 | Isobutanol production from cellobionic acid in Escherichia coli. Microbial Cell Factories, 2015, 14, 52.                                                                                                                    | 4.0  | 46        |
| 32 | Isobutanol production from cellobiose in Escherichia coli. Applied Microbiology and Biotechnology, 2014, 98, 3727-3736.                                                                                                     | 3.6  | 45        |
| 33 | Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nature<br>Communications, 2015, 6, 7488.                                                                                                      | 12.8 | 44        |
| 34 | Role of the lytic repressor in prophage induction of phage  as analyzed by a module-replacement<br>approach. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103,<br>4558-4563.      | 7.1  | 42        |
| 35 | Photosynthetic approaches to chemical biotechnology. Current Opinion in Biotechnology, 2013, 24, 1031-1036.                                                                                                                 | 6.6  | 42        |
| 36 | Metabolic engineering for higher alcohol production. Metabolic Engineering, 2014, 25, 174-182.                                                                                                                              | 7.0  | 42        |

**SHOTA ATSUMI** 

| #  | Article                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production. FEMS<br>Microbiology Letters, 2017, 364, .                                  | 1.8  | 42        |
| 38 | Systematic Approaches to Efficiently Produce 2,3-Butanediol in a Marine Cyanobacterium. ACS Synthetic Biology, 2017, 6, 2136-2144.                                 | 3.8  | 41        |
| 39 | Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.<br>ACS Synthetic Biology, 2015, 4, 1197-1204.                 | 3.8  | 40        |
| 40 | Photomixotrophic chemical production in cyanobacteria. Current Opinion in Biotechnology, 2018, 50, 65-71.                                                          | 6.6  | 40        |
| 41 | 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. Metabolic Engineering, 2016, 36, 28-36. | 7.0  | 39        |
| 42 | Regulatory circuit design and evolution using phage Â. Genes and Development, 2004, 18, 2086-2094.                                                                 | 5.9  | 34        |
| 43 | 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 361-373.               | 3.0  | 32        |
| 44 | A synthetic phage  regulatory circuit. Proceedings of the National Academy of Sciences of the United<br>States of America, 2006, 103, 19045-19050.                 | 7.1  | 31        |
| 45 | Alternative biofuel production in non-natural hosts. Current Opinion in Biotechnology, 2012, 23, 744-750.                                                          | 6.6  | 31        |
| 46 | Nonphotosynthetic Biological CO <sub>2</sub> Reduction. Biochemistry, 2019, 58, 1470-1477.                                                                         | 2.5  | 28        |
| 47 | Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production. ACS Synthetic Biology, 2017, 6, 69-75.             | 3.8  | 26        |
| 48 | An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study. Lab on<br>A Chip, 2010, 10, 2710.                                    | 6.0  | 24        |
| 49 | Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP. Nucleic<br>Acids Research, 2003, 31, 1488-1496.                       | 14.5 | 14        |
| 50 | Microbial production of human milk oligosaccharide lactodifucotetraose. Metabolic Engineering, 2021, 66, 12-20.                                                    | 7.0  | 14        |
| 51 | Biological conversion of gaseous alkenes to liquid chemicals. Metabolic Engineering, 2016, 38, 98-104.                                                             | 7.0  | 13        |
| 52 | Adaptive laboratory evolution for improved tolerance of isobutyl acetate in Escherichia coli.<br>Metabolic Engineering, 2022, 69, 50-58.                           | 7.0  | 13        |
| 53 | Light-induced production of isobutanol and 3-methyl-1-butanol by metabolically engineered cyanobacteria. Microbial Cell Factories, 2022, 21, 7.                    | 4.0  | 10        |
| 54 | Application of an engineered chromatic acclimation sensor for red-light-regulated gene expression in cyanobacteria. Algal Research, 2019, 44, 101691.              | 4.6  | 9         |

**SHOTA ATSUMI** 

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthetic Biology Approaches for Improving Chemical Production in Cyanobacteria. Frontiers in<br>Bioengineering and Biotechnology, 2022, 10, 869195. | 4.1 | 8         |
| 56 | Synthetic Biology Approaches to Produce C3-C6 Alcohols from Microorganisms. Current Chemical Biology, 2012, 6, 32-41.                                | 0.5 | 6         |
| 57 | Synthetic Biology Approaches to Produce C3-C6 Alcohols from Microorganisms. Current Chemical Biology, 2012, 6, 32-41.                                | 0.5 | 2         |
| 58 | Engineering trophic diversity into photosynthetic microbes. Biofuels, 2014, 5, 199-201.                                                              | 2.4 | 0         |