Reza Shaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/516349/publications.pdf

Version: 2024-02-01

224 papers 10,747 citations

28274 55 h-index 96 g-index

230 all docs 230 docs citations

times ranked

230

5329 citing authors

#	Article	IF	CITATIONS
1	Rehabilitation of swallowing by exercise in tube-fed patients with pharyngeal dysphagia secondary to abnormal UES opening. Gastroenterology, 2002, 122, 1314-1321.	1.3	407
2	Nighttime Heartburn Is An Under-Appreciated Clinical Problem That Impacts Sleep and Daytime Function: The Results of A Gallup Survey Conducted on Behalf of The American Gastroenterological Association. American Journal of Gastroenterology, 2003, 98, 1487-1493.	0.4	376
3	Upper esophageal sphincter function during deglutition. Gastroenterology, 1988, 95, 52-62.	1.3	362
4	Oropharyngeal dysphagia in older persons & Drophamp; ndash; from pathophysiology to adequate intervention: a review and summary of an international expert meeting. Clinical Interventions in Aging, 2016, 11, 189.	2.9	342
5	Dysphagia: current reality and scope of the problem. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 259-270.	17.8	339
6	Treatment of Chronic Posterior Laryngitis With Esomeprazole. Laryngoscope, 2006, 116, 254-260.	2.0	288
7	Eosinophilic esophagitis in adults: An emerging problem with unique esophageal features. Gastrointestinal Endoscopy, 2004, 59, 355-361.	1.0	274
8	Timing of videofluoroscopic, manometric events, and bolus transit during the oral and pharyngeal phases of swallowing. Dysphagia, 1989, 4, 8-15.	1.8	254
9	Esophagopharyngeal distribution of refluxed gastric acid in patients with reflux laryngitis. Gastroenterology, 1995, 109, 1575-1582.	1.3	244
10	Event-related fMRI of tasks involving brief motion. Human Brain Mapping, 1999, 7, 106-114.	3.6	243
11	Cerebral cortical representation of reflexive and volitional swallowing in humans. American Journal of Physiology - Renal Physiology, 2001, 280, G354-G360.	3.4	207
12	Coordination of deglutitive glottic closure with oropharyngeal swallowing. Gastroenterology, 1990, 98, 1478-1484.	1.3	190
13	Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology, 1994, 107, 396-402.	1.3	168
14	Augmentation of deglutitive upper esophageal sphincter opening in the elderly by exercise. American Journal of Physiology - Renal Physiology, 1997, 272, G1518-G1522.	3.4	165
15	Magnetic field changes in the human brain due to swallowing or speaking. Magnetic Resonance in Medicine, 1998, 40, 55-60.	3.0	165
16	The small-caliber esophagus: An unappreciated cause of dysphagia for solids in patients with eosinophilic esophagitis. Gastrointestinal Endoscopy, 2002, 55, 99-106.	1.0	164
17	Physical and pH Properties of Gastroesophagopharyngeal Refluxate: A 24-hour Simultaneous Ambulatory Impedance and pH Monitoring Study. American Journal of Gastroenterology, 2004, 99, 1000-1010.	0.4	157
18	Identification and characterization of cerebral cortical response to esophageal mucosal acid exposure and distention. Gastroenterology, 1998, 115, 1353-1362.	1.3	151

#	Article	IF	Citations
19	A Randomized Study Comparing the Shaker Exercise with Traditional Therapy: A Preliminary Study. Dysphagia, 2009, 24, 403-411.	1.8	138
20	A comparative study of unsedated transnasal esophagogastroduodenoscopy and conventional EGD. Gastrointestinal Endoscopy, 1996, 44, 422-424.	1.0	137
21	Pressure-flow dynamics of the oral phase of swallowing. Dysphagia, 1988, 3, 79-84.	1.8	135
22	Normal laryngeal valving patterns during three breath-hold maneuvers: A pilot investigation. Dysphagia, 1993, 8, 11-20.	1.8	133
23	Unsedated trans-nasal pharyngoesophagogastroduodenoscopy (T-EGD): Technique. Gastrointestinal Endoscopy, 1994, 40, 346-348.	1.0	131
24	Esophageal body and upper esophageal sphincter motor responses to esophageal provocation during maturation in preterm newborns. Journal of Pediatrics, 2003, 143, 31-38.	1.8	121
25	Mechanisms of reflexes induced by esophageal distension. American Journal of Physiology - Renal Physiology, 2001, 281, G1246-G1263.	3.4	118
26	Esophagoglottal closure reflex: A mechanism of airway protection. Gastroenterology, 1992, 102, 857-861.	1.3	115
27	Pharyngoglottal Closure Reflex: Characterization in Healthy Young, Elderly and Dysphagic Patients with Predeglutitive Aspiration. Gerontology, 2003, 49, 12-20.	2.8	115
28	Pharyngeal acid reflux events in patients with vocal cord nodules. Laryngoscope, 1998, 108, 1146-1149.	2.0	110
29	Possible Relationship of Gastroesophagopharyngeal Acid Reflux with Pathogenesis of Chronic Sinusitis. American Journal of Rhinology & Allergy, 1999, 13, 197-202.	2.2	110
30	Unsedated transnasal endoscopy accurately detects Barrett's metaplasia and dysplasia. Gastrointestinal Endoscopy, 2002, 56, 472-478.	1.0	110
31	Unsedated transnasal endoscopy accurately detects Barrett[apos]s metaplasia and dysplasia. Gastrointestinal Endoscopy, 2002, 56, 472-478.	1.0	104
32	Attaining and Maintaining Isometric and Isokinetic Goals of the Shaker Exercise. Dysphagia, 2005, 20, 133-138.	1.8	101
33	Characteristics of upper oesophageal sphincter and oesophageal body during maturation in healthy human neonates compared with adults. Neurogastroenterology and Motility, 2005, 17, 663-670.	3.0	98
34	Pharyngeal pH Monitoring in Patients with Posterior Laryngitis. Otolaryngology - Head and Neck Surgery, 1999, 120, 672-677.	1.9	97
35	Anatomy and Physiology of the Upper Esophageal Sphincter. American Journal of Medicine, 1997, 103, 50S-55S.	1.5	90
36	Augmentation of Deglutitive Thyrohyoid Muscle Shortening by the Shaker Exercise. Dysphagia, 2009, 24, 26-31.	1.8	83

#	Article	lF	CITATIONS
37	Pharyngeal acid Reflux in Patients with Single and Multiple Otolaryngologic Disorders. Otolaryngology - Head and Neck Surgery, 1999, 121, 725-730.	1.9	82
38	Swallow-related cerebral cortical activity maps are not specific to deglutition. American Journal of Physiology - Renal Physiology, 2001, 280, G531-G538.	3.4	82
39	Autonomic dysfunction, vasomotor rhinitis, and extraesophageal manifestations of gastroesophageal reflux. Otolaryngology - Head and Neck Surgery, 2002, 126, 382-387.	1.9	82
40	Effect of aging on the deglutitive oral, pharyngeal, and esophageal motor function. Dysphagia, 1994, 9, 221-228.	1.8	80
41	Effect of aging and bolus variables on pharyngeal and upper esophageal sphincter motor function. American Journal of Physiology - Renal Physiology, 1993, 264, G427-G432.	3.4	79
42	Comparison of Upper Esophageal Sphincter Opening in Healthy Asymptomatic Young and Elderly Volunteers. Annals of Otology, Rhinology and Laryngology, 1999, 108, 982-989.	1.1	73
43	Characteristics of lower esophageal sphincter relaxation induced by pharyngeal stimulation with minute amounts of water. Gastroenterology, 1996, 111, 378-384.	1.3	72
44	Outcomes of Acid Suppressive Therapy in Patients with Posterior Laryngitis. Otolaryngology - Head and Neck Surgery, 2001, 124, 16-22.	1.9	68
45	Esophago-Glottal Closure Reflex in Human Infants: A Novel Reflex Elicited With Concurrent Manometry and Ultrasonography. American Journal of Gastroenterology, 2007, 102, 2286-2293.	0.4	68
46	Effect of Postnatal Maturation on the Mechanisms of Esophageal Propulsion in Preterm Human Neonates: Primary and Secondary Peristalsis. American Journal of Gastroenterology, 2009, 104, 411-419.	0.4	67
47	Upper esophageal sphincter function during gastroesophageal reflux events revisited. American Journal of Physiology - Renal Physiology, 2000, 279, G262-G267.	3.4	65
48	Review article: impact of nightâ€time reflux on lifestyleâ€fâ^'â€funrecognized issues in reflux disease. Alimentary Pharmacology and Therapeutics, 2004, 20, 3-13.	3.7	64
49	Relative contribution of various airway protective mechanisms to prevention of aspiration during swallowing. American Journal of Physiology - Renal Physiology, 2003, 284, G933-G939.	3.4	63
50	Airway protective mechanisms: Current concepts. Dysphagia, 1995, 10, 216-227.	1.8	61
51	Recognizing the Importance of Dysphagia: Stumbling Blocks and Stepping Stones in the Twenty-First Century. Dysphagia, 2017, 32, 78-82.	1.8	60
52	Effect of chronic and acute cigarette smoking on the pharyngo-upper oesophageal sphincter contractile reflex and reflexive pharyngeal swallow. Gut, 1998, 43, 537-541.	12.1	59
53	Unsedated transnasal endoscopy: a new technique for accurately detecting and grading esophageal varices in cirrhotic patients. American Journal of Gastroenterology, 2002, 97, 2246-2249.	0.4	59
54	Definition and Implications of Novel Pharyngo-Glottal Reflex in Human Infants Using Concurrent Manometry Ultrasonography. American Journal of Gastroenterology, 2009, 104, 2572-2582.	0.4	59

#	Article	IF	CITATIONS
55	Effect of age and bolus variables on the coordination of the glottis and upper esophageal sphincter during swallowing. American Journal of Gastroenterology, 1993, 88, 665-9.	0.4	58
56	Reflex-mediated enhancement of airway protective mechanisms. American Journal of Medicine, 2000, 108, 8-14.	1.5	56
57	Inhibition of resting lower esophageal sphincter pressure by pharyngeal water stimulation in humans. Gastroenterology, 1995, 108, 441-446.	1.3	55
58	Unsedated transnasal EGD: an alternative approach to conventional esophagogastroduodenoscopy for documenting Helicobacter pylori eradication. Gastrointestinal Endoscopy, 1999, 49, 297-301.	1.0	55
59	Cerebral cortical registration of subliminal visceral stimulation. Gastroenterology, 2002, 122, 290-298.	1.3	55
60	Determinants of intrabolus pressure during esophageal peristaltic bolus transport. American Journal of Physiology - Renal Physiology, 1993, 264, G407-G413.	3.4	53
61	Intrapharyngeal Distribution of Gastric Acid Refluxate. Laryngoscope, 2003, 113, 1182-1191.	2.0	51
62	Characterization of the cerebral cortical representation of heartburn in GERD patients. American Journal of Physiology - Renal Physiology, 2004, 286, G174-G181.	3.4	50
63	Laryngo-upper esophageal sphincter contractile reflex in humans deteriorates with age. Gastroenterology, 2004, 127, 57-64.	1.3	50
64	An overview of the upper esophageal sphincter. Current Gastroenterology Reports, 2000, 2, 185-190.	2.5	49
65	Influence of Sleep Stages on Esophago-Upper Esophageal Sphincter Contractile Reflex and Secondary Esophageal Peristalsis. Gastroenterology, 2006, 130, 17-25.	1.3	49
66	Pharyngo-UES contractile reflex in patients with posterior laryngitis. Laryngoscope, 1998, 108, 1354-1357.	2.0	48
67	Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: role of IL- 1^2 and TGF- 1^2 2. American Journal of Physiology - Cell Physiology, 2014, 307, C859-C877.	4.6	48
68	Impaired Upper Esophageal Sphincter Reflexes in Patients With Supraesophageal Reflux Disease. Gastroenterology, 2015, 149, 1381-1391.	1.3	48
69	Excessive coupling of the salience network with intrinsic neurocognitive brain networks during rectal distension in adolescents with irritable bowel syndrome: a preliminary report. Neurogastroenterology and Motility, 2016, 28, 43-53.	3.0	46
70	Regional esophageal distribution and clearance of refluxed gastric acid. Gastroenterology, 1991, 101, 355-359.	1.3	43
71	Effect of aging on the secondary esophageal peristalsis: presbyesophagus revisited. American Journal of Physiology - Renal Physiology, 1995, 268, G772-G779.	3.4	42
72	Fatigue Analysis Before and After Shaker Exercise: Physiologic Tool for Exercise Design. Dysphagia, 2008, 23, 385-391.	1.8	42

#	Article	IF	CITATIONS
73	Social Media Analytics for Smart Health. IEEE Intelligent Systems, 2014, 29, 60-80.	4.0	41
74	Upper and lower esophageal sphincter kinetics are modified during maturation: effect of pharyngeal stimulus in premature infants. Pediatric Research, 2015, 77, 99-106.	2.3	41
75	Physiology and Pathophysiology of Glottic Reflexes and Pulmonary Aspiration: From Neonates to Adults. Seminars in Respiratory and Critical Care Medicine, 2010, 31, 554-560.	2.1	40
76	An update on the physiology of the components of the upper esophageal sphincter. Dysphagia, 1994, 9, 229-232.	1.8	38
77	Deterioration of the Pharyngo-UES Contractile Reflex in the Elderly. Laryngoscope, 2000, 110, 1563-1566.	2.0	38
78	Effect of chronic and acute cigarette smoking on the pharyngoglottal closure reflex. Gut, 2002, 51, 771-775.	12.1	38
79	Spectral analysis of surface electromyography (EMG) of upper esophageal sphincter-opening muscles during head lift exercise. Journal of Rehabilitation Research and Development, 2000, 37, 335-40.	1.6	37
80	Reflex Mediated Airway Protective Mechanisms Against Retrograde Aspiration. American Journal of Medicine, 1997, 103, 64S-73S.	1.5	36
81	Manometric evidence for a phonation-induced UES contractile reflex. American Journal of Physiology - Renal Physiology, 2008, 294, G885-G891.	3.4	36
82	Neurocognitive processing of esophageal central sensitization in the insula and cingulate gyrus. American Journal of Physiology - Renal Physiology, 2008, 294, G787-G794.	3.4	35
83	Protective Role of Aerodigestive Reflexes Against Aspiration: Study on Subjects With Impaired and Preserved Reflexes. Gastroenterology, 2011, 140, 1927-1933.	1.3	34
84	Functional connectivity of the cortical swallowing network in humans. NeuroImage, 2013, 76, 33-44.	4.2	34
85	Prevention of esophagopharyngeal reflux by augmenting the upper esophageal sphincter pressure barrier. Laryngoscope, 2014, 124, 2268-2274.	2.0	34
86	Coordination of deglutitive vocal cord closure and oral-pharyngeal swallowing events in the elderly. European Journal of Gastroenterology and Hepatology, 1996, 8, 425-9.	1.6	34
87	Characterization of the pharyngo-UES contractile reflex in humans. American Journal of Physiology - Renal Physiology, 1997, 273, G854-G858.	3.4	33
88	Pharyngeal dysphagia in postesophagectomy patients: correlation with deglutitive biomechanics. Annals of Thoracic Surgery, 2000, 69, 989-992.	1.3	33
89	ESOPHAGEAL DISORDERS IN THE ELDERLY. Gastroenterology Clinics of North America, 2001, 30, 335-361.	2.2	33
90	Analgesic effect of minocycline in rat model of inflammation-induced visceral pain. European Journal of Pharmacology, 2014, 727, 87-98.	3.5	32

#	Article	IF	CITATIONS
91	Effect of nasal noninvasive respiratory support methods on pharyngeal provocation-induced aerodigestive reflexes in infants. American Journal of Physiology - Renal Physiology, 2016, 310, G1006-G1014.	3.4	32
92	Response properties of the brainstem neurons of the cat following intra-esophageal acid–pepsin infusion. Neuroscience, 2005, 135, 1285-1294.	2.3	31
93	Differential effects of transient receptor vanilloid one (TRPV1) antagonists in acid-induced excitation of esophageal vagal afferent fibers of rats. Neuroscience, 2009, 161, 515-525.	2.3	31
94	Response of the Upper Esophageal Sphincter to Esophageal Distension Is Affected by Posture, Velocity, Volume, and Composition of the Infusate. Gastroenterology, 2012, 142, 734-743.e7.	1.3	31
95	Mechanisms of airway protection and upper esophageal sphincter opening during belching. American Journal of Physiology - Renal Physiology, 1992, 262, G621-G628.	3.4	29
96	Neonatal cystitis-induced colonic hypersensitivity in adult rats: a model of viscero-visceral convergence. Neurogastroenterology and Motility, 2011, 23, 683-e281.	3.0	29
97	Pharyngeal airway protective reflexes are triggered before the maximum volume of fluid that the hypopharynx can safely hold is exceeded. American Journal of Physiology - Renal Physiology, 2011, 301, G197-G202.	3.4	28
98	Effect of ageing on the upper and lower oesophageal sphincters. European Journal of Gastroenterology and Hepatology, 2000, 12, 1221-1225.	1.6	27
99	MicroRNA–mediated downregulation of potassium-chloride-cotransporter and vesicular γ-aminobutyric acid transporter expression in spinal cord contributes to neonatal cystitis–induced visceral pain in rats. Pain, 2017, 158, 2461-2474.	4.2	27
100	Mechanisms of cough provocation and cough resolution in neonates with bronchopulmonary dysplasia. Pediatric Research, 2015, 78, 462-469.	2.3	26
101	Characterization and quantification of a pharyngo-UES contractile reflex in cats. American Journal of Physiology - Renal Physiology, 1994, 267, G972-G983.	3.4	25
102	Identification and characterization of the esophagoglottal closure reflex in a feline model. American Journal of Physiology - Renal Physiology, 1994, 266, G147-G153.	3.4	25
103	Vocal Cord Closure Pressure During Volitional Swallow and Other Voluntary Tasks. Dysphagia, 2002, 17, 13-18.	1.8	25
104	Effect of Systemic Alcohol and Nicotine on Airway Protective Reflexes. American Journal of Gastroenterology, 2009, 104, 2431-2438.	0.4	25
105	Altered expression of P2X3 in vagal and spinal afferents following esophagitis in rats. Histochemistry and Cell Biology, 2009, 132, 585-597.	1.7	25
106	Inhibition of progressing primary esophageal peristalsis by pharyngeal water stimulation in humans. Gastroenterology, 1996, 110, 419-423.	1.3	24
107	Disruption of primary and secondary esophageal peristalsis by afferent stimulation. American Journal of Physiology - Renal Physiology, 2000, 279, G255-G261.	3.4	24
108	Effect of lower esophageal sphincter tone and crural diaphragm contraction on distensibility of the gastroesophageal junction in humans. American Journal of Physiology - Renal Physiology, 2004, 287, G815-G821.	3.4	24

#	Article	IF	Citations
109	Dickkopf-1, the Wnt antagonist, is induced by acidic pH and mediates epithelial cellular senescence in human reflux esophagitis. American Journal of Physiology - Renal Physiology, 2014, 306, G557-G574.	3.4	24
110	Oesophageal clearance of small amounts of equal or less than one millilitre of acid Gut, 1992, 33, 7-10.	12.1	23
111	Effects of laryngeal restriction on pharyngeal peristalsis and biomechanics: Clinical implications. American Journal of Physiology - Renal Physiology, 2016, 310, G1036-G1043.	3.4	23
112	Swallow strength training exercise for elderly: A health maintenance need. Neurogastroenterology and Motility, 2018, 30, e13382.	3.0	23
113	Pharyngoesophageal and cardiorespiratory interactions: potential implications for premature infants at risk of clinically significant cardiorespiratory events. American Journal of Physiology - Renal Physiology, 2019, 316, G304-G312.	3.4	23
114	Pharyngoglottal closure reflex: identification and characterization in a feline model. American Journal of Physiology - Renal Physiology, 1998, 275, G521-G525.	3.4	22
115	Unsedated transnasal laryngo-esophagogastroduodenoscopy: an alternative to conventional endoscopy. American Journal of Medicine, 2001, 111, 153-156.	1.5	22
116	Maturation Modulates Pharyngeal-Stimulus Provoked Pharyngeal and Respiratory Rhythms in Human Infants. Dysphagia, 2018, 33, 63-75.	1.8	22
117	Gastroesophageal Reflux Disease. Journal of Clinical Gastroenterology, 2007, 41, S160-S162.	2.2	21
118	Prevalence of gastroesophagopharyngeal acid reflux events: an evidence-based systematic review. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2005, 26, 239-244.	1.3	20
119	Reproducibility of swallow-induced cortical BOLD positive and negative fMRI activity. American Journal of Physiology - Renal Physiology, 2012, 303, G600-G609.	3.4	19
120	A human model of restricted upper esophageal sphincter opening and its pharyngeal and UES deglutitive pressure phenomena. American Journal of Physiology - Renal Physiology, 2016, 311, G84-G90.	3.4	19
121	Defiant dysphagia: Small-caliber esophagus and refractory benign esophageal strictures. Current Gastroenterology Reports, 2001, 3, 225-230.	2.5	18
122	Dickkopf Homologs in Squamous Mucosa of Esophagitis Patients Are Overexpressed Compared with Barrett's Patients and Healthy Controls. American Journal of Gastroenterology, 2006, 101, 1437-1448.	0.4	18
123	Defining pharyngeal contractile integral during high-resolution manometry in neonates: a neuromotor marker of pharyngeal vigor. Pediatric Research, 2018, 84, 341-347.	2.3	18
124	Nighttime GERD: Clinical implications and therapeutic challenges. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2004, 18, 31-38.	2.4	17
125	Swallow Syncope in Association with Schatzki Ring and Hypertensive Esophageal Peristalsis: Report of Three Cases and Review of the Literature. Dysphagia, 2005, 20, 273-277.	1.8	17
126	Anatomic-manometric correlation of the upper esophageal sphincter: a concurrent US and manometry study. Gastrointestinal Endoscopy, 2010, 72, 587-592.	1.0	17

#	Article	IF	CITATIONS
127	Visceral analgesic effect of 5-HT4 receptor agonist in rats involves the rostroventral medulla (RVM). Neuropharmacology, 2014, 79, 345-358.	4.1	17
128	Wnt/β-Catenin Signaling Activation beyond Robust Nuclear β-Catenin Accumulation in Nondysplastic Barrett's Esophagus: Regulation via Dickkopf-1. Neoplasia, 2015, 17, 598-611.	5.3	17
129	Neonatal bladder inflammation induces long-term visceral pain and altered responses of spinal neurons in adult rats. Neuroscience, 2017, 346, 349-364.	2.3	17
130	Characterization and mechanisms of the pharyngoesophageal inhibitory reflex. American Journal of Physiology - Renal Physiology, 1998, 275, G1127-G1136.	3.4	16
131	Laparoscopic Nissen Fundoplication Decreases Gastroesophageal Junction Distensibility in Patients With Gastroesophageal Reflux Disease. Journal of Gastrointestinal Surgery, 2005, 9, 1318-1325.	1.7	16
132	Effect of esophageal acid exposure on the cortical swallowing network in healthy human subjects. American Journal of Physiology - Renal Physiology, 2009, 297, G152-G158.	3.4	16
133	Characterization of the Upper Esophageal Sphincter Response During Cough. Chest, 2012, 142, 1229-1236.	0.8	14
134	Mechanism of UES relaxation initiated by gastric air distension. American Journal of Physiology - Renal Physiology, 2014, 307, G452-G458.	3.4	14
135	Characterization and mechanisms of the pharyngeal swallow activated by stimulation of the esophagus. American Journal of Physiology - Renal Physiology, 2016, 311, G827-G837.	3.4	14
136	Characterization of pharyngeal peristaltic pressure variability during volitional swallowing in healthy individuals. Neurogastroenterology and Motility, 2017, 29, e13119.	3.0	14
137	Dickkopf-1 (DKK1) promotes tumor growth via Akt-phosphorylation and independently of Wnt-axis in Barrett's associated esophageal adenocarcinoma. American Journal of Cancer Research, 2019, 9, 330-346.	1.4	14
138	Older Age Reduces Upper Esophageal Sphincter and Esophageal Body Responses to Simulated Slow and Ultraslow Reflux Events and Post-Reflux Residue. Gastroenterology, 2018, 155, 760-770.e1.	1.3	13
139	Normal physiology of the aerodigestive tract and its effect on the upper gut. American Journal of Medicine, 2003, 115, 2-9.	1.5	12
140	Esophageal Dysphagia. Physical Medicine and Rehabilitation Clinics of North America, 2008, 19, 729-745.	1.3	12
141	Effect of aging on hypopharyngeal safe volume and the aerodigestive reflexes protecting the airways. Laryngoscope, 2014, 124, 1862-1868.	2.0	12
142	Effects of esophageal acidification on esophageal reflexes controlling the upper esophageal sphincter. American Journal of Physiology - Renal Physiology, 2019, 316, G45-G54.	3.4	12
143	Modulation of oesophago-UOS contractile reflex: effect of proximal and distal esophageal distention and swallowing. Neurogastroenterology and Motility, 2003, 15, 323-329.	3.0	11
144	Radial asymmetry of the upper oesophageal sphincter pressure profile: fact or artefact. Neurogastroenterology and Motility, 2006, 18, 418-424.	3.0	11

#	Article	IF	Citations
145	Performance and Optimal Technique for Pharyngeal Impedance Recording: A Simulated Pharyngeal Reflux Study. American Journal of Gastroenterology, 2007, 102, 33-39.	0.4	11
146	Intramucosal Distribution of WNT Signaling Components in Human Esophagus. Journal of Clinical Gastroenterology, 2009, 43, 327-337.	2.2	11
147	Neuronal Plasticity in the Cingulate Cortex of Rats Following Esophageal Acid Exposure in Early Life. Gastroenterology, 2011, 141, 544-552.	1.3	11
148	Intrinsic functional connectivity of the brain swallowing network during subliminal esophageal acid stimulation. Neurogastroenterology and Motility, 2013, 25, 992.	3.0	11
149	Dysregulation of WNT5A/ROR2 Signaling Characterizes the Progression of Barrett-Associated Esophageal Adenocarcinoma. Molecular Cancer Research, 2016, 14, 647-659.	3.4	11
150	Protective mechanisms against supraesophageal GERD. Journal of Clinical Gastroenterology, 2000, 30, S3-8.	2.2	11
151	Kinematic and Dynamic Characteristics of Solid Pellet Movement during the Pharyngeal Phase of Swallowing. Annals of Otology, Rhinology and Laryngology, 1996, 105, 716-723.	1.1	10
152	Loss of Secondary Esophageal Peristalsis is Not a Contributory Pathogenetic Factor in Posterior Laryngitis. Annals of Otology, Rhinology and Laryngology, 2001, 110, 152-157.	1.1	10
153	The Real-Time IRB: A Collaborative Innovation to Decrease IRB Review Time. Journal of Empirical Research on Human Research Ethics, 2018, 13, 432-437.	1.3	10
154	Mechanisms of bradycardia in premature infants: Aerodigestive–cardiac regulatory–rhythm interactions. Physiological Reports, 2020, 8, e14495.	1.7	10
155	Unsedated transnasal endoscopy with ultrathin endoscope as a screening tool for research studies. Laryngoscope, 2012, 122, 1719-1723.	2.0	9
156	<scp>AMPA</scp> receptor subunits expression and phosphorylation in cingulate cortex in rats following esophageal acid exposure. Neurogastroenterology and Motility, 2013, 25, 973.	3.0	9
157	Medical Management of Nocturnal Symptoms of Gastro-Oesophageal Reflux Disease in the Elderly. Drugs and Aging, 2003, 20, 509-516.	2.7	8
158	Pharyngeal peristaltic pressure variability, operational range, and functional reserve. American Journal of Physiology - Renal Physiology, 2017, 312, G516-G525.	3.4	8
159	Prioritizing Studies of COVID-19 and Lessons Learned. Journal of Clinical and Translational Science, 2021, 5, 1-27.	0.6	8
160	Oropharyngeal dysphagia. Current Treatment Options in Gastroenterology, 2000, 3, 77-87.	0.8	7
161	Esophageal acid stimulation alters insular cortex functional connectivity in gastroesophageal reflux disease. Neurogastroenterology and Motility, 2015, 27, 201-211.	3.0	7
162	The Dysphagia Research Society Accelerating a Priority Research Agenda. Dysphagia, 2017, 32, 11-14.	1.8	7

#	Article	IF	CITATIONS
163	Physiology of Aerodigestive Reflexes in Neonates and Adults. , 2012, , 893-918.		6
164	Upper esophageal sphincter augmentation reduces pharyngeal reflux in nasogastric tube–fed patients. Laryngoscope, 2018, 128, 1310-1315.	2.0	6
165	Variables influencing manometric parameters of deglutitive and nonâ€deglutitive upper esophageal sphincter: A study of 89 asymptomatic participants. Neurogastroenterology and Motility, 2022, 34, e14175.	3.0	6
166	Electrophysiologic validation of deglutitive ues opening head lift exercise. Gastroenterology, 1998, 114, A711.	1.3	5
167	The effect of body position on esophageal reflexes in cats: a possible mechanism of SIDS?. Pediatric Research, 2018, 83, 731-738.	2.3	5
168	The Feasibility of Establishing Agreement Between Laboratories for Measures of Oropharyngeal Structural Movements. Journal of Medical Speech - Language Pathology, 2009, 17, 9-19.	0.2	5
169	A novel rehabilitative exercise for dysphagic patients: Effect on swallow function and biomechanics. Gastroenterology, 1998, 114, A747.	1.3	4
170	Newer therapies for Gastroesophageal reflux disease: Numb, burn, or stitch?. Current Gastroenterology Reports, 2001, 3, 188-190.	2.5	4
171	Peripheral mechanisms affecting the lower esophageal sphincter tone. Gastroenterology Clinics of North America, 2002, 31, S21-S33.	2.2	4
172	Optimal Stimulus Intensity and Reliability of Air Stimulation Technique for Elicitation of Laryngo-Upper Esophageal Sphincter Contractile Reflex. Annals of Otology, Rhinology and Laryngology, 2005, 114, 223-228.	1.1	4
173	Prevalence of Abnormal Upper GI Findings in Apparently Healthy Volunteers Enrolled for Research Studies. Gastrointestinal Endoscopy, 2009, 69, AB350-AB351.	1.0	4
174	Special Section on DRS 25th Anniversary. Dysphagia, 2017, 32, 1-2.	1.8	4
175	Managing the risks and benefits of clinical research in response to a pandemic. Journal of Clinical and Translational Science, 2021, 5, .	0.6	4
176	Fatigability of the external anal sphincter muscles using a novel strength training resistance exercise device. American Journal of Physiology - Renal Physiology, 2021, 320, G609-G616.	3.4	4
177	Characteristics of highâ€resolution esophageal manometry in children without dysphagia. Neurogastroenterology and Motility, 2022, 34, e14184.	3.0	4
178	Eventâ€related fMRI of tasks involving brief motion. Human Brain Mapping, 1999, 7, 106-114.	3.6	4
179	Nighttime heartburn is an underappreciated clinical problem that impacts sleep and daytime function. Gastroenterology, 2001, 120, A420-A420.	1.3	4
180	Vagal Afferent Nerve Stimulated Reflexes in the GI Tract. Frontiers in Neuroscience, 2005, , 379-401.	0.0	4

#	Article	IF	Citations
181	Aging in the gastrointestinal tract. Disease-a-Month, 2001, 47, 69-101.	1.1	3
182	Safety and feasibility of evaluating airway-protective reflexes during sleep: new technique and preliminary results. Gastrointestinal Endoscopy, 2007, 65, 483-486.	1.0	3
183	Mechanisms of airway responses to esophageal acidification in cats. Journal of Applied Physiology, 2016, 120, 774-783.	2.5	3
184	Characterization and mechanisms of the supragastric belch in the cat. American Journal of Physiology - Renal Physiology, 2017, 313, G220-G229.	3.4	3
185	Interplay of spinal and vagal pathways on esophageal acid-related anterior cingulate cortex functional networks in rats. American Journal of Physiology - Renal Physiology, 2019, 316, G615-G622.	3.4	3
186	Pharyngeal Motor Function. , 2006, , 895-912.		3
187	Aging in the gastrointestinal tract. Disease-a-Month, 2001, 47, 0072-0101.	1.1	3
188	Relationship of intraluminal pH and pressure within the lower esophageal sphincter. American Journal of Gastroenterology, 1991, 86, 812-6.	0.4	3
189	A new technique for determining the intra-pharyngeal distribution of gastric acid refluxate. Gastroenterology, 2000, 118, A409.	1.3	2
190	Effect of underlying etiology and duration of dysphagia on clinical outcomes of suprahyoid muscle strengthening exercise in tube fed dysphagic patients. Gastroenterology, 2000, 118, A408.	1.3	2
191	Reproducibility of the Resting and Active State Connectivity of the Deglutition Connectome. Gastroenterology, 2011, 140, S-368.	1.3	2
192	On the 20th Anniversary of the Dysphagia Research Society. Dysphagia, 2012, 27, 1-1.	1.8	2
193	Tu1765 Regurgitation Can Indicate Either True Esophago-Pharyngeal Reflux (EPR) Event or Upper Esophageal Sphincter (UES) and Sub-Sphincter Proximal Esophageal Acid Exposure. Gastroenterology, 2013, 144, S-839.	1.3	2
194	Emergence of Deglutology: A Transdisciplinary Field. Clinical Gastroenterology and Hepatology, 2014, 12, 2046-2048.	4.4	2
195	Comparative effect of the sites of anterior cervical pressure on the geometry of the upper esophageal sphincter highâ€pressure zone. Laryngoscope, 2017, 127, 2466-2474.	2.0	2
196	UES Opening Muscle Dysfunction., 2013,, 529-535.		2
197	The rights (and responsibilities) of the public to advance health through research. Archives of Public Health, 2021, 79, 198.	2.4	2
198	M2019 Phonation-Induced UES Contractile Reflex Is Preserved in the Elderly. Gastroenterology, 2009, 136, A-468.	1.3	1

#	Article	IF	CITATIONS
199	W1829 Influence of Position On the Maximum Volume of Fluid That Can Safely Dwell in the Hypo-Pharyngx; "Hypopharyngeal Safe Volume―(HPSV). Gastroenterology, 2009, 136, A-734.	1.3	1
200	A Novel "UES Assist Device―for Prevention of Supine Pharyngeal Reflux of Gastric Content. Gastroenterology, 2011, 140, S-190.	1.3	1
201	231 Mechanism of Esophagopharyngeal Reflux: A Concurrent Videopharyngoscopy and High Resolution Manometry/Impedance Study. Gastroenterology, 2013, 144, S-50.	1.3	1
202	Airway Protective Mechanisms, Reciprocal Physiology of the Deglutitive Axis., 2013,, 35-51.		1
203	Effect of Aging of the Pharynx and the UES. , 2013, , 215-225.		1
204	841 Variability of Pharyngeal Peristaltic Pressure Parameters Measured by High Resolution Manometry (HRM); A Study of Over 900 Pressure Signatures. Gastroenterology, 2015, 148, S-167.	1.3	1
205	Correlation of Pharyngeal Phase of Swallowing Biomechanics and Striated Muscle Esophageal Contractility: A Potential Stretch Related Modulatory Interaction. Gastroenterology, 2017, 152, S691.	1.3	1
206	Characterization and mechanism of the esophago-esophageal contractile reflex of the striated muscle esophagus. American Journal of Physiology - Renal Physiology, 2019, 317, G304-G313.	3.4	1
207	Identification and characterization of rostral ventromedial medulla neurons synaptically connected to the urinary bladder afferents in female rats with or without neonatal cystitis. Journal of Comparative Neurology, 2022, 530, 1129-1147.	1.6	1
208	Review article: a conceptual model for the relationship of nocturnal acidity and extra-oesophageal manifestations of gastro-oesophageal reflux disease - where are we now?. Alimentary Pharmacology and Therapeutics Symposium Series, 2007, 3, 31-37.	0.7	0
209	Editorial: The 15th Anniversary of the Dysphagia Research Society and Establishment of the "Endowment for the Future― Dysphagia, 2008, 23, 101-101.	1.8	0
210	Deglutitive Pharyngeal and UES Pressure Phenomena. , 2013, , 257-266.		0
211	Prolonged esophageal acid exposures induce synaptic downscaling of cortical membrane <scp>AMPA</scp> receptor subunits in rats. Neurogastroenterology and Motility, 2016, 28, 1356-1369.	3.0	0
212	Reply. Gastroenterology, 2016, 150, 1693-1694.	1.3	0
213	Obituary. Neurogastroenterology and Motility, 2017, 29, e13079.	3.0	0
214	A CASE FOR DEVELOPING AN EXERCISE-BASED PREVENTIVE SWALLOW HEALTH MAINTENANCE PROGRAM IN THE ELDERLY. Innovation in Aging, 2017, 1 , 441-441.	0.1	0
215	In Memoriam—Konrad H. Soergel, MD, 1929–2017. Gastroenterology, 2017, 153, 1172-1173.	1.3	0
216	ILâ€6 expression and secretion in HETâ€1 cells is associated with Coxâ€2. FASEB Journal, 2006, 20, A1079.	0.5	0

#	Article	IF	Citations
217	p38 MAPK Regulates Induction of HSPs in Human Esophageal Microvascular Endothelial Cells (HEMEC) in Response to Acidic pH Stress: Role of PI3/Akt. FASEB Journal, 2006, 20, .	0.5	0
218	Acidic pH induced NFkB activation and ILâ€6 secretion in human esophageal epithelial cells (HETâ€1) mediated by PKC. FASEB Journal, 2007, 21, A764.	0.5	0
219	Gastroenterologic disorders. , 2007, , 577-605.		0
220	lonizing Radiation Modulates Hsp34 and beta atenin. FASEB Journal, 2008, 22, 1120.18.	0.5	0
221	Säre-vermittelte Aktivierung des Wnt/β-Catenin-Signalwegs wärend der gastroösophagealen Refluxkrankheit (GERD) in vitro. , 2019, 57, .		O
222	Tumor-induzierte endotheliale-mesenchymale Transition (EndMT) im $\tilde{A}\P$ sophagealen Adenokarzinom. Zeitschrift Fur Gastroenterologie, 2019, 57, .	0.5	0
223	Differences in fatigability of muscles involved in fecal continence: Potential clinical ramifications. Physiological Reports, 2021, 9, e15144.	1.7	0
224	Complications of Upper Gastrointestinal Endoscopy. , 0, , 41-47.		0