Rajenahally V Jagadeesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/516346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale Fe ₂ O ₃ -Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science, 2013, 342, 1073-1076.	12.6	868
2	Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5, 537-543.	13.6	633
3	MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358, 326-332.	12.6	604
4	Selective Oxidation of Alcohols to Esters Using Heterogeneous Co ₃ O ₄ –N@C Catalysts under Mild Conditions. Journal of the American Chemical Society, 2013, 135, 10776-10782.	13.7	334
5	Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chemical Society Reviews, 2020, 49, 6273-6328.	38.1	240
6	Transitionâ€Metalâ€Catalyzed Utilization of Methanol as a C ₁ â€Source in Organic Synthesis. Angewandte Chemie - International Edition, 2017, 56, 6384-6394.	13.8	227
7	Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nature Communications, 2014, 5, 4123.	12.8	205
8	Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chemical Communications, 2011, 47, 10972.	4.1	200
9	Nitrogen-Doped Graphene-Activated Iron-Oxide-Based Nanocatalysts for Selective Transfer Hydrogenation of Nitroarenes. ACS Catalysis, 2015, 5, 1526-1529.	11.2	146
10	Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts. Angewandte Chemie - International Edition, 2014, 53, 4359-4363.	13.8	143
11	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	47.7	136
12	Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines. Nature Communications, 2018, 9, 4123.	12.8	132
13	Hydrogenation using iron oxide–based nanocatalysts for the synthesis of amines. Nature Protocols, 2015, 10, 548-557.	12.0	131
14	Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chemistry, 2015, 17, 898-902.	9.0	127
15	Palladium atalyzed Trifluoromethylation of (Hetero)Arenes with CF ₃ Br. Angewandte Chemie - International Edition, 2016, 55, 2782-2786.	13.8	119
16	Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. Nature Protocols, 2015, 10, 916-926.	12.0	115
17	Reusable Nickel Nanoparticles atalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angewandte Chemie - International Edition, 2019, 58, 5064-5068.	13.8	94
18	Cobalt-based nanoparticles prepared from MOF–carbon templates as efficient hydrogenation catalysts. Chemical Science, 2018, 9, 8553-8560.	7.4	87

Rajenahally V Jagadeesh

#	Article	IF	CITATIONS
19	Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines. Nature Communications, 2017, 8, 1344.	12.8	78
20	"Nanorustâ€â€€atalyzed Benign Oxidation of Amines for Selective Synthesis of Nitriles. ChemSusChem, 2015, 8, 92-96.	6.8	66
21	Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nature Catalysis, 2022, 5, 20-29.	34.4	65
22	Efficient and Convenient Palladiumâ€Catalyzed Amination of Allylic Alcohols with Nâ€Heterocycles. Angewandte Chemie - International Edition, 2012, 51, 11556-11560.	13.8	62
23	Nickelâ€Catalyzed Stereodivergent Synthesis of <i>E</i> ―and <i>Z</i> â€Alkenes by Hydrogenation of Alkynes. ChemSusChem, 2019, 12, 3363-3369.	6.8	59
24	A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of Nâ€Heteroarenes Including Pyridines. Angewandte Chemie - International Edition, 2020, 59, 17408-17412.	13.8	58
25	Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines. Nature Communications, 2019, 10, 5443.	12.8	57
26	Reductive amination using cobalt-based nanoparticles for synthesis of amines. Nature Protocols, 2020, 15, 1313-1337.	12.0	56
27	Cobalt-Nanoparticles Catalyzed Efficient and Selective Hydrogenation of Aromatic Hydrocarbons. ACS Catalysis, 2019, 9, 8581-8591.	11.2	52
28	Stable and reusable nanoscale Fe ₂ O ₃ -catalyzed aerobic oxidation process for the selective synthesis of nitriles and primary amides. Green Chemistry, 2018, 20, 266-273.	9.0	47
29	Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis. Science, 2022, 376, 1433-1441.	12.6	46
30	Übergangsmetallkatalysierte Nutzung von Methanol als C ₁ â€Quelle in der organischen Synthese. Angewandte Chemie, 2017, 129, 6482-6492.	2.0	45
31	Ultra-small cobalt nanoparticles from molecularly-defined Co–salen complexes for catalytic synthesis of amines. Chemical Science, 2020, 11, 2973-2981.	7.4	43
32	Levulinic Acid Derived Reusable Cobalt-Nanoparticles-Catalyzed Sustainable Synthesis of γ-Valerolactone. ACS Sustainable Chemistry and Engineering, 2019, 7, 14756-14764.	6.7	42
33	Synthesis of Functional Chemicals from Ligninâ€derived Monomers by Selective Organic Transformations. Advanced Synthesis and Catalysis, 2020, 362, 5143-5169.	4.3	42
34	A "universal―catalyst for aerobic oxidations to synthesize (hetero)aromatic aldehydes, ketones, esters, acids, nitriles, and amides. CheM, 2022, 8, 508-531.	11.7	37
35	Reusable Co-nanoparticles for general and selective <i>N</i> -alkylation of amines and ammonia with alcohols. Chemical Science, 2021, 13, 111-117.	7.4	35
36	Reusable Nickel Nanoparticlesâ€Catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angewandte Chemie, 2019, 131, 5118-5122.	2.0	32

#	Article	IF	CITATIONS
37	Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2019, 370, 372-377.	6.2	30
38	Scalable preparation of stable and reusable silica supported palladium nanoparticles as catalysts for N-alkylation of amines with alcohols. Journal of Catalysis, 2020, 382, 141-149.	6.2	30
39	Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie - International Edition, 2021, 60, 18591-18598.	13.8	30
40	Base Metalâ€Catalyzed Câ€Methylation Reactions Using Methanol. Advanced Synthesis and Catalysis, 2021, 363, 5028-5046.	4.3	30
41	Cobalt single-atom catalysts for domino reductive amination and amidation of levulinic acid and related molecules to N-heterocycles. Chem Catalysis, 2022, 2, 178-194.	6.1	30
42	Expedient Synthesis of <i>N</i> â€Methyl―and <i>N</i> â€Alkylamines by Reductive Amination using Reusable Cobalt Oxide Nanoparticles. ChemCatChem, 2018, 10, 1235-1240.	3.7	29
43	General and selective synthesis of primary amines using Ni-based homogeneous catalysts. Chemical Science, 2020, 11, 4332-4339.	7.4	29
44	Synthesis of nitriles from amines using nanoscale Co ₃ O ₄ -based catalysts via sustainable aerobic oxidation. Organic and Biomolecular Chemistry, 2016, 14, 3356-3359.	2.8	27
45	Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5â€Hydroxymethylfurfural using Silicaâ€supported Cobalt―Nanoparticles. ChemCatChem, 2022, 14, .	3.7	19
46	Cobalt-catalysed CH-alkylation of indoles with alcohols by borrowing hydrogen methodology. Green Chemistry, 2022, 24, 4566-4572.	9.0	19
47	Recent developments in reductive N-methylation with base-metal catalysts. Tetrahedron, 2021, 98, 132414.	1.9	16
48	Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie, 2021, 133, 18739-18746.	2.0	15
49	Synergetic Bimetallic Oxidative Esterification of 5-Hydroxymethylfurfural under Mild Conditions. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	9
50	A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of Nâ€Heteroarenes Including Pyridines. Angewandte Chemie, 2020, 132, 17561-17565.	2.0	8
51	Frontispiece: Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
52	Expedient Synthesis of N -Methyl- and N -Alkylamines by Reductive Amination using Reusable Cobalt Oxide Nanoparticles. ChemCatChem, 2018, 10, 1205-1205.	3.7	0
53	Frontispiz: Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie, 2021, 133,	2.0	0
54	Catalysis with MNPs on N-Doped Carbon. Molecular Catalysis, 2020, , 199-219.	1.3	0

0

#	Article	IF	CITATIONS
55	Reductive N-alkylation of primary amides using nickel-nanoparticles. Tetrahedron, 2021, , 132526.	1.9	0

56 Surface-modified nanomaterials for synthesis of pharmaceuticals. , 2022, , 251-266.