
## Hiroyuki Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163098/publications.pdf Version: 2024-02-01



|      | Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. , 2021, , 1-35.<br>Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. , 2021, , 1481-1515.                                                         |     | 1  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 2 L  | aser Ablation in Liquids for Nanomaterial Synthesis and Applications. , 2021, , 1481-1515.                                                                                                                                                    |     |    |
|      |                                                                                                                                                                                                                                               |     | 3  |
|      | Preparation of spherical upconversion nanoparticles NaYF4:Yb,Er by laser ablation in liquid and optical properties. Journal of Laser Applications, 2020, 32, .                                                                                | 0.8 | 4  |
|      | Dbservation of photoluminescence from YVO <sub>4</sub> :Eu <sup>3+</sup> nanoparticles produced<br>n laser ablation in water. Applied Physics Express, 2020, 13, 075008.                                                                      | 1.1 | 1  |
| 5 F  | Fabrication of Magnetic α-Fe <sub>2</sub> 0 <sub>3</sub> /Fe <sub>3</sub> O <sub>4</sub> Composite<br>Particles by Nanosecond Laser Irradiation of α-Fe <sub>2</sub> 0 <sub>3</sub> Powder in Water.<br>Chemistry Letters, 2020, 49, 413-415. | 0.7 | 4  |
|      | Preparation of silicon naphthalocyanine nanoparticles by laser ablation in liquid and their optical properties. Japanese Journal of Applied Physics, 2019, 58, 128002.                                                                        | 0.8 | 4  |
|      | Advances on Self-propagating High-temperature Synthesis for Efficient Improvements of Underground and Space Environments Utilizations. Ceramics in Modern Technologies, 2019, 1, 20-24.                                                       | 0.3 | 0  |
|      | Comparison of picosecond and nanosecond lasers for the synthesis of TiN sub-micrometer spherical<br>particles by pulsed laser melting in liquid. Applied Physics Express, 2018, 11, 035001.                                                   | 1.1 | 16 |
| 9 J  | NIR-responsive upconversion nanoparticles/anatase TiO <sub>2</sub> composite aerogel. Japanese<br>ournal of Applied Physics, 2018, 57, 02CC03.                                                                                                | 0.8 | 1  |
|      | Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging. Japanese Journal of Applied Physics, 2018, 57, 035001.                                                | 0.8 | 8  |
| 11   | Properties of Ce <sup>3+</sup> -Doped Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> Phosphor<br>Nanoparticles Formed by Laser Ablation in Liquid. ECS Journal of Solid State Science and Technology,<br>2018, 7, R63-R69.                    | 0.9 | 6  |
| 12 L | aser-induced growth of YVO <sub>4</sub> :Eu <sup>3+</sup> nanoparticles from sequential flowing aqueous suspension. RSC Advances, 2017, 7, 9002-9008.                                                                                         | 1.7 | 6  |
|      | Morphology and optical properties of YVO 4 :Eu 3+ nanoparticles fabricated by laser ablation in<br>ethanol. Applied Surface Science, 2017, 425, 689-695.                                                                                      | 3.1 | 24 |
|      | One-step preparation of YVO4:Eu3+ nanoparticles by pulsed laser ablation. Journal of Alloys and<br>Compounds, 2016, 683, 1-6.                                                                                                                 | 2.8 | 18 |
|      | Facile and Chemically Pure Preparation of YVO4:Eu3+ Colloid with Novel Nanostructure via Laser<br>Ablation in Water. Scientific Reports, 2016, 6, 20507.                                                                                      | 1.6 | 38 |
| 16 F | Fabrication of Langmuir-Blodgett Film of Surface-Modified ZnO Nanoparticles Prepared by Solution<br>Process. Transactions of the Materials Research Society of Japan, 2016, 41, 67-70.                                                        | 0.2 | 1  |
|      | Facile preparation of YAG:Ce nanoparticles by laser irradiation in water and their optical properties.<br>SpringerPlus, 2016, 5, 325.                                                                                                         | 1.2 | 19 |
|      | Effect of sintering temperature on the characteristics of ceramic hollow spheres produced by sacrificial template technique. Ceramics International, 2016, 42, 8409-8412.                                                                     | 2.3 | 7  |

HIROYUKI WADA

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optical Properties of Y <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> :Ce,Tb<br>Nanoparticles Prepared by Reverse Micelle Method. Transactions of the Materials Research Society of<br>Japan, 2015, 40, 287-290. | 0.2 | 0         |
| 20 | Fabrication of nanoscale Ca-α-SiAlON:Eu <sup>2+</sup> phosphor by laser ablation in water. Applied Physics Express, 2015, 8, 115001.                                                                           | 1.1 | 16        |
| 21 | Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid. Applied<br>Surface Science, 2015, 348, 54-59.                                                                      | 3.1 | 24        |
| 22 | Preparation of spherical particles by laser melting in liquid using TiN as a raw material. Applied<br>Physics B: Lasers and Optics, 2015, 119, 475-483.                                                        | 1.1 | 13        |
| 23 | Surface modification of Y <sub>2</sub> O <sub>3</sub> :Er,Yb upconversion nanoparticles prepared by laser ablation in water. Japanese Journal of Applied Physics, 2014, 53, 05FK04.                            | 0.8 | 7         |
| 24 | Optical properties of highly crystalline Y <sub>2</sub> O <sub>3</sub> :Er,Yb nanoparticles prepared by laser ablation in water. Materials Research Express, 2014, 1, 035043.                                  | 0.8 | 16        |
| 25 | Encapsulation of solutions for controlling heat transfer. Powder Technology, 2014, 268, 387-391.                                                                                                               | 2.1 | 2         |
| 26 | The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid. Applied Physics A: Materials Science and Processing, 2014, 117, 131-135.                           | 1.1 | 24        |
| 27 | Photovoltaic properties of Si-based quantum-dot-sensitized solar cells prepared using laser plasma in<br>liquid. Japanese Journal of Applied Physics, 2014, 53, 010208.                                        | 0.8 | 8         |
| 28 | Optical properties of silica-coated Y 2 O 3 :Er,Yb nanoparticles in the presence of polyvinylpyrrolidone. Journal of Luminescence, 2014, 156, 8-15.                                                            | 1.5 | 6         |
| 29 | Preparation of Si nanoparticles by laser ablation in liquid and their application as photovoltaic material in quantum dot sensitized solar cell. Journal of Physics: Conference Series, 2014, 518, 012023.     | 0.3 | 8         |
| 30 | The Role of a Macro-Economic Model for Disaster Risk Reduction Policy in Developing Countries.<br>Journal of Integrated Disaster Risk Management, 2014, 4, 12-29.                                              | 0.2 | 3         |
| 31 | Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water. Journal of Luminescence, 2013, 137, 220-224.                                                                          | 1.5 | 42        |
| 32 | Laser Wavelength Effect on Size and Morphology of Silicon Nanoparticles Prepared by Laser Ablation<br>in Liquid. Japanese Journal of Applied Physics, 2013, 52, 025001.                                        | 0.8 | 37        |
| 33 | Process stages during solution combustion synthesis of strontium aluminates. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 151-156.                                          | 0.2 | 8         |
| 34 | Effects of Laser Energy Density on Silicon Nanoparticles Produced Using Laser Ablation in Liquid.<br>Journal of Physics: Conference Series, 2013, 441, 012035.                                                 | 0.3 | 14        |
| 35 | Photon-Avalanche Effect of Y <sub>2</sub> O <sub>3</sub> :Er,Yb Nanoparticles Prepared by Laser<br>Ablation in Liquid. Transactions of the Materials Research Society of Japan, 2013, 38, 317-320.             | 0.2 | 2         |
| 36 | Preparation of Y2O3:Er,Yb nanoparticles by laser ablation in liquid. Applied Surface Science, 2012, 261, 118-122.                                                                                              | 3.1 | 33        |

HIROYUKI WADA

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Optical Properties of Afterglow Nanoparticles : , Capped with Polyethylene Glycol. Advances in<br>Optical Technologies, 2012, 2012, 1-6.                                                                              | 0.8 | 11        |
| 38 | Preparation of SiO <sub>2</sub> -Capped Sr <sub>2</sub> MgSi <sub>2</sub> O <sub>7</sub> :Eu,Dy<br>Nanoparticles with Laser Ablation in Liquid. Journal of Nanotechnology, 2012, 2012, 1-6.                           | 1.5 | 8         |
| 39 | NiO-Al combustion synthesis as applied to joining Al2O3 ceramics. International Journal of Self-Propagating High-Temperature Synthesis, 2012, 21, 146-150.                                                            | 0.2 | 2         |
| 40 | Preparation of InP Nanoparticles by Laser Ablation in Liquid. The Review of Laser Engineering, 2012, 40, 117.                                                                                                         | 0.0 | 1         |
| 41 | Afterglow Properties of Silica-Capped Sr2MgSi2O7:Eu,Dy Nanoparticles Prepared by Laser Ablation in Ethanol. CheM, 2012, 2, 47-51.                                                                                     | 0.2 | Ο         |
| 42 | Preparation and Optical Properties of Rare Earth Doped Y <sub>2</sub> O <sub>3</sub> Nanoparticles<br>Synthesized by Thermal Decomposition with Oleic Acid. Advanced Materials Research, 2011, 332-334,<br>1974-1978. | 0.3 | 2         |
| 43 | Volume combustion synthesis of NiAl as applied to ceramics joining. International Journal of<br>Self-Propagating High-Temperature Synthesis, 2011, 20, 94-99.                                                         | 0.2 | 3         |
| 44 | Preparation of long-afterglow colloidal solution of Sr2MgSi2O7: Eu2+, Dy3+ by laser ablation in<br>liquid. Applied Surface Science, 2011, 257, 2170-2175.                                                             | 3.1 | 40        |
| 45 | Optical Properties of ZnO Nanoparticles Capped with Polymers. Materials, 2011, 4, 1132-1143.                                                                                                                          | 1.3 | 105       |
| 46 | Optical Properties of Laser-Irradiated ZnO Nanoparticles in 2-Propanol. Japanese Journal of Applied Physics, 2010, 49, 052602.                                                                                        | 0.8 | 4         |
| 47 | Increase in the fluorescence intensity of ZnO nanoparticle by laser irradiation. Materials Letters, 2008, 62, 3407-3409.                                                                                              | 1.3 | 7         |
| 48 | Analysis of the Structure of Vertical Combdrives of Fast Scanning Micromirrors. Japanese Journal of Applied Physics, 2004, 43, L548-L550.                                                                             | 0.8 | 0         |
| 49 | Bonding of Two Silicon Layers above a Gap to Fabricate a Fast Scanning Micromirror. Japanese Journal of Applied Physics, 2004, 43, L50-L52.                                                                           | 0.8 | 2         |
| 50 | Snap Down Voltage of a Fast-Scanning Micromirror with Vertical Electrostatic Combdrives. Japanese<br>Journal of Applied Physics, 2004, 43, L284-L286.                                                                 | 0.8 | 1         |
| 51 | Measurement and Analysis of Cavity Loss of a 266 nm Continuous-Wave Solid-State Laser. Japanese<br>Journal of Applied Physics, 2004, 43, L393-L395.                                                                   | 0.8 | 2         |
| 52 | The Torque of High Speed Scanning Micromirrors with Vertical Combdrives. Japanese Journal of Applied Physics, 2003, 42, L1449-L1451.                                                                                  | 0.8 | 0         |
| 53 | Process for High Speed Micro Electro Mechanical Systems (MEMS) Scanning Mirrors with Vertical<br>Comb Drives. Japanese Journal of Applied Physics, 2002, 41, L899-L901.                                               | 0.8 | 16        |
| 54 | Optical Characterization of High Speed Scanning Micromirrors with Vertical Combdrives. Japanese<br>Journal of Applied Physics, 2002, 41, L1169-L1171.                                                                 | 0.8 | 8         |

| #  | Article                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using ?-BaB_2O_4. Optics Letters, 1998, 23, 195. | 1.7 | 42        |
| 56 | Reliability of Czochralski-grown B-BaB2O4 (BBO) devices. , 1998, , .                                                                                         |     | 4         |
| 57 | <title>Progress in all-solid-state deep-ultraviolet coherent light sources</title> . , 1996, , .                                                             |     | 1         |