Hiroyuki Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163098/publications.pdf

Version: 2024-02-01

57	683	14	24
papers	citations	h-index	g-index
59	59	59	774
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optical Properties of ZnO Nanoparticles Capped with Polymers. Materials, 2011, 4, 1132-1143.	2.9	105
2	Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using ?-BaB_2O_4. Optics Letters, 1998, 23, 195.	3.3	42
3	Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water. Journal of Luminescence, 2013, 137, 220-224.	3.1	42
4	Preparation of long-afterglow colloidal solution of Sr2MgSi2O7: Eu2+, Dy3+ by laser ablation in liquid. Applied Surface Science, 2011, 257, 2170-2175.	6.1	40
5	Facile and Chemically Pure Preparation of YVO4:Eu3+ Colloid with Novel Nanostructure via Laser Ablation in Water. Scientific Reports, 2016, 6, 20507.	3.3	38
6	Laser Wavelength Effect on Size and Morphology of Silicon Nanoparticles Prepared by Laser Ablation in Liquid. Japanese Journal of Applied Physics, 2013, 52, 025001.	1.5	37
7	Preparation of Y2O3:Er,Yb nanoparticles by laser ablation in liquid. Applied Surface Science, 2012, 261, 118-122.	6.1	33
8	The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid. Applied Physics A: Materials Science and Processing, 2014, 117, 131-135.	2.3	24
9	Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid. Applied Surface Science, 2015, 348, 54-59.	6.1	24
10	Morphology and optical properties of YVO 4:Eu 3+ nanoparticles fabricated by laser ablation in ethanol. Applied Surface Science, 2017, 425, 689-695.	6.1	24
11	Facile preparation of YAG:Ce nanoparticles by laser irradiation in water and their optical properties. SpringerPlus, 2016, 5, 325.	1.2	19
12	One-step preparation of YVO4:Eu3+ nanoparticles by pulsed laser ablation. Journal of Alloys and Compounds, 2016, 683, 1-6.	5 . 5	18
13	Process for High Speed Micro Electro Mechanical Systems (MEMS) Scanning Mirrors with Vertical Comb Drives. Japanese Journal of Applied Physics, 2002, 41, L899-L901.	1.5	16
14	Optical properties of highly crystalline Y ₂ O ₃ :Er,Yb nanoparticles prepared by laser ablation in water. Materials Research Express, 2014, 1, 035043.	1.6	16
15	Fabrication of nanoscale Ca-α-SiAlON:Eu ²⁺ phosphor by laser ablation in water. Applied Physics Express, 2015, 8, 115001.	2.4	16
16	Comparison of picosecond and nanosecond lasers for the synthesis of TiN sub-micrometer spherical particles by pulsed laser melting in liquid. Applied Physics Express, 2018, 11, 035001.	2.4	16
17	Effects of Laser Energy Density on Silicon Nanoparticles Produced Using Laser Ablation in Liquid. Journal of Physics: Conference Series, 2013, 441, 012035.	0.4	14
18	Preparation of spherical particles by laser melting in liquid using TiN as a raw material. Applied Physics B: Lasers and Optics, 2015, 119, 475-483.	2,2	13

#	Article	IF	CITATIONS
19	Optical Properties of Afterglow Nanoparticles:, Capped with Polyethylene Glycol. Advances in Optical Technologies, 2012, 2012, 1-6.	0.8	11
20	Optical Characterization of High Speed Scanning Micromirrors with Vertical Combdrives. Japanese Journal of Applied Physics, 2002, 41, L1169-L1171.	1.5	8
21	Preparation of SiO ₂ -Capped Sr ₂ MgSi ₂ O ₇ :Eu,Dy Nanoparticles with Laser Ablation in Liquid. Journal of Nanotechnology, 2012, 2012, 1-6.	3.4	8
22	Process stages during solution combustion synthesis of strontium aluminates. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 151-156.	0.5	8
23	Photovoltaic properties of Si-based quantum-dot-sensitized solar cells prepared using laser plasma in liquid. Japanese Journal of Applied Physics, 2014, 53, 010208.	1.5	8
24	Preparation of Si nanoparticles by laser ablation in liquid and their application as photovoltaic material in quantum dot sensitized solar cell. Journal of Physics: Conference Series, 2014, 518, 012023.	0.4	8
25	Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging. Japanese Journal of Applied Physics, 2018, 57, 035001.	1.5	8
26	Increase in the fluorescence intensity of ZnO nanoparticle by laser irradiation. Materials Letters, 2008, 62, 3407-3409.	2.6	7
27	Surface modification of Y ₂ O ₃ :Er,Yb upconversion nanoparticles prepared by laser ablation in water. Japanese Journal of Applied Physics, 2014, 53, 05FK04.	1.5	7
28	Effect of sintering temperature on the characteristics of ceramic hollow spheres produced by sacrificial template technique. Ceramics International, 2016, 42, 8409-8412.	4.8	7
29	Optical properties of silica-coated Y 2 O 3 :Er,Yb nanoparticles in the presence of polyvinylpyrrolidone. Journal of Luminescence, 2014, 156, 8-15.	3.1	6
30	Laser-induced growth of YVO ₄ :Eu ³⁺ nanoparticles from sequential flowing aqueous suspension. RSC Advances, 2017, 7, 9002-9008.	3.6	6
31	Properties of Ce ³⁺ -Doped Y ₃ Al ₅ O ₁₂ Phosphor Nanoparticles Formed by Laser Ablation in Liquid. ECS Journal of Solid State Science and Technology, 2018, 7, R63-R69.	1.8	6
32	Reliability of Czochralski-grown B-BaB2O4 (BBO) devices. , 1998, , .		4
33	Optical Properties of Laser-Irradiated ZnO Nanoparticles in 2-Propanol. Japanese Journal of Applied Physics, 2010, 49, 052602.	1.5	4
34	Preparation of silicon naphthalocyanine nanoparticles by laser ablation in liquid and their optical properties. Japanese Journal of Applied Physics, 2019, 58, 128002.	1.5	4
35	Preparation of spherical upconversion nanoparticles NaYF4:Yb,Er by laser ablation in liquid and optical properties. Journal of Laser Applications, 2020, 32, .	1.7	4
36	Fabrication of Magnetic \hat{l}_{\pm} -Fe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>3</sub>/Fe₃0₄ Composite Particles by Nanosecond Laser Irradiation of \hat{l}_{\pm}-Fe₂0₃ Powder in Water. Chemistry Letters, 2020, 49, 413-415.$	1.3	4

3

#	Article	IF	CITATIONS
37	Volume combustion synthesis of NiAl as applied to ceramics joining. International Journal of Self-Propagating High-Temperature Synthesis, 2011, 20, 94-99.	0.5	3
38	The Role of a Macro-Economic Model for Disaster Risk Reduction Policy in Developing Countries. Journal of Integrated Disaster Risk Management, 2014, 4, 12-29.	0.3	3
39	Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. , 2021, , 1481-1515.		3
40	Bonding of Two Silicon Layers above a Gap to Fabricate a Fast Scanning Micromirror. Japanese Journal of Applied Physics, 2004, 43, L50-L52.	1.5	2
41	Measurement and Analysis of Cavity Loss of a 266 nm Continuous-Wave Solid-State Laser. Japanese Journal of Applied Physics, 2004, 43, L393-L395.	1.5	2
42	Preparation and Optical Properties of Rare Earth Doped Y ₂ O ₃ Nanoparticles Synthesized by Thermal Decomposition with Oleic Acid. Advanced Materials Research, 2011, 332-334, 1974-1978.	0.3	2
43	NiO-Al combustion synthesis as applied to joining Al2O3 ceramics. International Journal of Self-Propagating High-Temperature Synthesis, 2012, 21, 146-150.	0.5	2
44	Encapsulation of solutions for controlling heat transfer. Powder Technology, 2014, 268, 387-391.	4.2	2
45	Photon-Avalanche Effect of Y ₂ O ₃ :Er,Yb Nanoparticles Prepared by Laser Ablation in Liquid. Transactions of the Materials Research Society of Japan, 2013, 38, 317-320.	0.2	2
46	<title>Progress in all-solid-state deep-ultraviolet coherent light sources</title> ., 1996,,.		1
47	Snap Down Voltage of a Fast-Scanning Micromirror with Vertical Electrostatic Combdrives. Japanese Journal of Applied Physics, 2004, 43, L284-L286.	1.5	1
48	Fabrication of Langmuir-Blodgett Film of Surface-Modified ZnO Nanoparticles Prepared by Solution Process. Transactions of the Materials Research Society of Japan, 2016, 41, 67-70.	0.2	1
49	NIR-responsive upconversion nanoparticles/anatase TiO ₂ composite aerogel. Japanese Journal of Applied Physics, 2018, 57, 02CC03.	1.5	1
50	Observation of photoluminescence from YVO ₄ :Eu ³⁺ nanoparticles produced in laser ablation in water. Applied Physics Express, 2020, 13, 075008.	2.4	1
51	Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. , 2021, , 1-35.		1
52	Preparation of InP Nanoparticles by Laser Ablation in Liquid. The Review of Laser Engineering, 2012, 40, 117.	0.0	1
53	The Torque of High Speed Scanning Micromirrors with Vertical Combdrives. Japanese Journal of Applied Physics, 2003, 42, L1449-L1451.	1.5	0
54	Analysis of the Structure of Vertical Combdrives of Fast Scanning Micromirrors. Japanese Journal of Applied Physics, 2004, 43, L548-L550.	1.5	0

HIROYUKI WADA

#	Article	IF	CITATIONS
55	Optical Properties of Y ₂ Si ₂ O ₇ :Ce,Tb Nanoparticles Prepared by Reverse Micelle Method. Transactions of the Materials Research Society of Japan, 2015, 40, 287-290.	0.2	0
56	Afterglow Properties of Silica-Capped Sr2MgSi2O7:Eu,Dy Nanoparticles Prepared by Laser Ablation in Ethanol. CheM, 2012, 2, 47-51.	0.2	0
57	Advances on Self-propagating High-temperature Synthesis for Efficient Improvements of Underground and Space Environments Utilizations. Ceramics in Modern Technologies, 2019, 1, 20-24.	0.3	0