Ingrid TÃ;vora Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5163021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications. Advanced Materials, 2000, 12, 965-968.	11.1	352
2	Development of Metal Oxide Nanoparticles with High Stability Against Particle Growth Using a Metastable Solid Solution. Advanced Materials, 2002, 14, 905.	11.1	133
3	Synthesis and characterization of the NiAl2O4, CoAl2O4 and ZnAl2O4 spinels by the polymeric precursors method. Journal of Alloys and Compounds, 2009, 483, 453-455.	2.8	102
4	High Photoluminescent Metal–Organic Frameworks as Optical Markers for the Identification of Gunshot Residues. Analytical Chemistry, 2011, 83, 4720-4723.	3.2	67
5	Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems. Sensors and Actuators B: Chemical, 2004, 97, 31-38.	4.0	60
6	PEDIA: prioritization of exome data by image analysis. Genetics in Medicine, 2019, 21, 2807-2814.	1.1	58
7	Sr1â ^{°°} xBaxSnO3 system applied in the photocatalytic discoloration of an azo-dye. Solid State Sciences, 2014, 28, 67-73.	1.5	47
8	A study of the SnO2·Nb2O5 system for an ethanol vapour sensor: a correlation between microstructure and sensor performance. Sensors and Actuators B: Chemical, 2001, 72, 180-183.	4.0	46
9	Controlling the energy transfer in lanthanide–organic frameworks for the production of white-light emitting materials. CrystEngComm, 2014, 16, 6914-6918.	1.3	45
10	Energy transfer upconversion dynamics in YVO 4 :Yb 3+ ,Er 3+. Journal of Luminescence, 2016, 170, 560-570.	1.5	44
11	Application of the Metal–Organic Framework [Eu(BTC)] as a Luminescent Marker for Gunshot Residues: A Synthesis, Characterization, and Toxicity Study. ACS Applied Materials & Interfaces, 2017, 9, 4684-4691.	4.0	43
12	Up-conversion properties of lanthanide-organic frameworks and how to track ammunitions using these materials. RSC Advances, 2012, 2, 3083.	1.7	41
13	Annealing Effects on the Photocatalytic Activity of ZnO Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 3635-3640.	0.9	38
14	Effects of Synthesis and Processing on Supersaturated Rare Earth-Doped Nanometric SnO2Powders. Nano Letters, 2002, 2, 969-973.	4.5	34
15	ZnAl ₂ O ₄ -based luminescent marker for gunshot residue identification and ammunition traceability. Analytical Methods, 2013, 5, 705-709.	1.3	32
16	Catalytic activity of nanometric pure and rare earth-doped SnO2 samples. Materials Letters, 2008, 62, 1677-1680.	1.3	31
17	Effect of synthesis parameters on the structural characteristics and photocatalytic activity of ZnO. Materials Chemistry and Physics, 2012, 136, 505-511.	2.0	31
18	Use of luminescent gunshot residues markers in forensic context. Forensic Science International, 2014, 244, 276-284.	1.3	28

#	Article	IF	CITATIONS
19	Lanthanide-Organic Gels as a Multifunctional Supramolecular Smart Platform. ACS Applied Materials & Interfaces, 2017, 9, 16458-16465.	4.0	28
20	Substrate-controlled allotropic phases and growth orientation of TiO ₂ epitaxial thin films. Journal of Applied Crystallography, 2010, 43, 1502-1512.	1.9	27
21	Luminescence and properties of La2O3–B2O3–M2O5:Ln (M=Nb(V) or Ta(V)) and La2O3–B2O3–M2O5–PbO/Bi2O3 glasses. Journal of Alloys and Compounds, 1998, 275-277, 738-741.	2.8	22
22	NIR hyperspectral images for identification of gunshot residue from tagged ammunition. Analytical Methods, 2018, 10, 4711-4717.	1.3	22
23	Identification of Luminescent Markers for Gunshot Residues: Fluorescence, Raman Spectroscopy, and Chemometrics. Analytical Chemistry, 2019, 91, 12444-12452.	3.2	22
24	Evaluation of advanced oxidative processes in biodiesel wastewater treatment. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 85-90.	2.0	22
25	Synthesis of [Dy(DPA)(HDPA)] and its potential as gunshot residue marker. Journal of Luminescence, 2016, 170, 697-700.	1.5	21
26	Influence of the network modifier on the characteristics of MSnO3 (M=Sr and Ca) thin films synthesized by chemical solution deposition. Journal of Solid State Chemistry, 2013, 199, 34-41.	1.4	18
27	SrSnO3/g-C3N4 and sunlight: Photocatalytic activity and toxicity of degradation byproducts. Journal of Environmental Chemical Engineering, 2020, 8, 103633.	3.3	18
28	Spectroscopy and crystallization behavior of Eu3+-doped La2O3:B2O3 binary glasses. Journal of Non-Crystalline Solids, 1997, 219, 160-164.	1.5	17
29	Luminescent sensors for nitroaromatic compound detection: Investigation of mechanism and evaluation of suitability of using in screening test in forensics. Microchemical Journal, 2019, 150, 104037.	2.3	17
30	SrSnO3:N â \in " Nitridation and evaluation of photocatalytic activity. Journal of Alloys and Compounds, 2015, 649, 491-494.	2.8	16
31	Investigation of the use of luminescent markers as gunshot residue indicators. Forensic Science International, 2017, 280, 95-102.	1.3	16
32	New luminescent lanthanide-based coordination compounds: Synthesis, studies of optical properties and application as marker for gunshot residues. Journal of Luminescence, 2018, 202, 89-96.	1.5	16
33	SnO2·Nb2O5 films for ethanol sensor, obtained by deposition of alcoholic suspensions. Materials Letters, 2000, 43, 166-169.	1.3	15
34	Preparation of KNbO3 thin films onto alumina substrates by polymeric precursor method. Thin Solid Films, 2005, 493, 139-145.	0.8	15
35	Microstructure comparison between KNbO3 thin films grown by polymeric precursors and PLD methods. Solid State Sciences, 2005, 7, 1317-1323.	1.5	15
36	[Ln2(BDC)3(H2O)4] : A low cost alternative for GSR luminescent marking. Journal of Luminescence, 2018, 200, 24-29.	1.5	13

#	Article	IF	CITATIONS
37	KTaO3 powders and thin films prepared by polymeric precursor method. Solid State Sciences, 2006, 8, 606-612.	1.5	12
38	Synthesis of SrSnO3 thin films by pulsed laser deposition: Influence of substrate and deposition temperature. Thin Solid Films, 2010, 519, 614-618.	0.8	12
39	Psychosocial outcomes and counselee satisfaction following genetic counseling for hereditary breast and ovarian cancer: A patient-reported outcome study. Journal of Psychosomatic Research, 2016, 89, 39-45.	1.2	12
40	Use of luminescent gunshot residues markers in forensic context—Part II. Forensic Science International, 2017, 281, 161-170.	1.3	12
41	Study of YVO4 as a photocatalyst: Correlation between synthetic route and ecotoxicity. Journal of Environmental Chemical Engineering, 2018, 6, 2846-2854.	3.3	11
42	Toxicological study of the degradation products of antineoplastic agent etoposide in commercial formulation treated by heterogeneous photocatalysis using SrSnO3. Environmental Science and Pollution Research, 2019, 26, 4224-4233.	2.7	11
43	Down- and Up-Conversion Photoluminescence of Carbon-Dots from Brewing Industry Waste: Application in Live Cell-Imaging Experiments. Journal of the Brazilian Chemical Society, 2015, , .	0.6	10
44	Luminescent Marker for GSR: Evaluation of the Acute Oral and Inhalation Toxicity of the MOF [Eu(DPA)(HDPA)]. ACS Applied Bio Materials, 2020, 3, 3049-3056.	2.3	10
45	Evolution of the structural and microstructural characteristics of SrSn1â^'xTixO3 thin films under the influence of the composition, the substrate and the deposition method. Surface and Coatings Technology, 2017, 313, 361-373.	2.2	9
46	Ammunition encoding by means of co-doped luminescent markers. Microchemical Journal, 2019, 145, 539-546.	2.3	9
47	Synthesis and characterization of spherical Tb-MCM-41. Journal of Alloys and Compounds, 2010, 490, 667-671.	2.8	8
48	Zinc-gallium oxynitride powders: effect of the oxide precursor synthesis route. Ceramica, 2013, 59, 269-276.	0.3	8
49	Identification of ANFO: Use of luminescent taggants in post-blast residues. Forensic Science International, 2017, 275, 8-13.	1.3	8
50	Application of luminescent markers to ammunition encoding in forensic routine using a Video Spectral Comparator (VSC). Microchemical Journal, 2020, 159, 105362.	2.3	4
51	SrSnO3/g-C3N4 dry phase sunlight photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 412, 113255.	2.0	4
52	Desenvolvimento de sensores para gás à base de SnO2 nanoestruturado: influência da microestrutura no desempenho do sensor. Ceramica, 2000, 46, 156-159.	0.3	3
53	Pure and Gd doped LAMOX powders and thin films obtained by chemical route. Materials Science and Technology, 2009, 25, 1346-1350.	0.8	3
54	Influence of the Structural Characteristics of Epitaxial TiO2 Thin Films on Their Photocatalytic Properties. Journal of Nanoscience and Nanotechnology, 2017, 17, 4326-4334.	0.9	3

Ingrid TÃivora Weber

#	ARTICLE	IF	CITATIONS
55	Evaluation of interferers in sampling materials used in explosive residue analysis by ion chromatography. Forensic Science International, 2020, 307, 109908.	1.3	3
56	Organic load removal and microbial disinfection of raw domestic sewage using SrSnO3/g-C3N4 with sunlight. Environmental Science and Pollution Research, 2021, 28, 45009-45018.	2.7	3
57	NanopartÃculas catalisadoras suportadas por materiais cerâmicos. Ceramica, 2002, 48, 163-171.	0.3	2
58	High prevalence of BRCA1 stop mutation c.4183C>T in the Tyrolean population: implications for genetic testing. European Journal of Human Genetics, 2016, 24, 258-262.	1.4	2
59	Photoluminescence in Alkaline Earth Stannate Thin Films Grown by Physical and Chemical Methods. Engineering Materials, 2021, , 155-183.	0.3	2
60	A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications. , 2000, 12, 965.		2
61	Synthesis Methods Evaluation for Preparation of the Zno:Co Diluted Magnetic Semiconductor (DMS). Materials Science Forum, 2008, 591-593, 387-391.	0.3	1
62	Analysis of Luminescent Gunshot Residue (LGSR) on Different Types of Fabrics. Journal of Forensic Sciences, 2020, 65, 67-72.	0.9	1
63	Chromatographic Analysis of Byproducts from a Non-Toxic Ammunition and a Marked Ammunition: An Assessment of Toxicity. Brazilian Journal of Analytical Chemistry, 2021, 8, .	0.3	1
64	Yttrium orthovanadates phosphors as up-conversion luminescent markers for gunshot residue identification. Journal of Luminescence, 2022, , 119020.	1.5	0
65	Encoding of Luminescent Ink Markers Using Low-Level Data Fusion and Chemometrics. Journal of the Brazilian Chemical Society. 0	0.6	0