
Ana Sayago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5162940/publications.pdf Version: 2024-02-01

ANIA SAVACO

#	Article	IF	CITATIONS
1	Evolution of Physicochemical Parameters during the Thermal-Based Production of Ãgua-mel, a Traditional Portuguese Honey-Related Food Product. Molecules, 2022, 27, 57.	3.8	2
2	High-Throughput Method for Wide-Coverage and Quantitative Phenolic Fingerprinting in Plant-Origin Foods and Urine Samples. Journal of Agricultural and Food Chemistry, 2022, 70, 7796-7804.	5.2	4
3	Cultivation of Microalgae Chlorella Using Wine Industry by-Products. Proceedings (mdpi), 2021, 66, .	0.2	1
4	Mechanistic Insights into Alzheimer's Disease Unveiled through the Investigation of Disturbances in Central Metabolites and Metabolic Pathways. Biomedicines, 2021, 9, 298.	3.2	10
5	Potential of Ultraviolet-Visible Spectroscopy for the Differentiation of Spanish Vinegars According to the Geographical Origin and the Prediction of Their Functional Properties. Foods, 2021, 10, 1830.	4.3	8
6	Multicompartmental High-Throughput Metabolomics Based on Mass Spectrometry. Neuromethods, 2021, , 189-198.	0.3	0
7	The application of eggshells and sugarcane bagasse as potential biomaterials in the removal of heavy metals from aqueous solutions. South African Journal of Chemical Engineering, 2020, 34, 142-150.	2.4	28
8	Recommendations and Best Practices for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics. Metabolites, 2020, 10, 229.	2.9	71
9	Volatile Profiling of Strawberry Fruits Cultivated in a Soilless System to Investigate Cultivar-Dependent Chemical Descriptors. Foods, 2020, 9, 768.	4.3	12
10	Fatty Acid Profiling for the Authentication of Iberian Hams According to the Feeding Regime. Foods, 2020, 9, 149.	4.3	14
11	Multi-Chemical Profiling of Strawberry as a Traceability Tool to Investigate the Effect of Cultivar and Cultivation Conditions. Foods, 2020, 9, 96.	4.3	21
12	Assessment of Virgin Olive Oil Adulteration by a Rapid Luminescent Method. Foods, 2019, 8, 287.	4.3	19
13	Simple and Efficient Green Extraction of Steviol Glycosides from Stevia rebaudiana Leaves. Foods, 2019, 8, 402.	4.3	13
14	High-Throughput Metabolomics Based on Direct Mass Spectrometry Analysis in Biomedical Research. Methods in Molecular Biology, 2019, 1978, 27-38.	0.9	6
15	Combination of vintage and new-fashioned analytical approaches for varietal and geographical traceability of olive oils. LWT - Food Science and Technology, 2019, 111, 99-104.	5.2	15
16	Metabolomics: An Emerging Tool for Wine Characterization and the Investigation of Health Benefits. , 2019, , 315-350.		5
17	Combination of complementary data mining methods for geographical characterization of extra virgin olive oils based on mineral composition. Food Chemistry, 2018, 261, 42-50.	8.2	42
18	Characterization and evaluation of phenolic profiles and color as potential discriminating features among Spanish extra virgin olive oils with protected designation of origin. Food Chemistry, 2018, 241, 328-337.	8.2	42

Ana Sayago

#	Article	IF	CITATIONS
19	High-Throughput Direct Mass Spectrometry-Based Metabolomics to Characterize Metabolite Fingerprints Associated with Alzheimer's Disease Pathogenesis. Metabolites, 2018, 8, 52.	2.9	19
20	Optimization of Growth and Carotenoid Production by Haloferax mediterranei Using Response Surface Methodology. Marine Drugs, 2018, 16, 372.	4.6	33
21	Mass Spectrometry-Based Metabolomic Multiplatform for Alzheimer's Disease Research. Methods in Molecular Biology, 2018, 1750, 125-137.	0.9	7
22	An Overview on the Importance of Combining Complementary Analytical Platforms in Metabolomic Research. Current Topics in Medicinal Chemistry, 2018, 17, 3289-3295.	2.1	28
23	Metabolomics in Alzheimer's disease: The need of complementary analytical platforms for the identification of biomarkers to unravel the underlying pathology. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1071, 75-92.	2.3	64
24	Direct infusion mass spectrometry for metabolomic phenotyping of diseases. Bioanalysis, 2017, 9, 131-148.	1.5	75
25	Application of Targeted Metabolomics to Investigate Optimum Growing Conditions to Enhance Bioactive Content of Strawberry. Journal of Agricultural and Food Chemistry, 2017, 65, 9559-9567.	5.2	19
26	Exploring antioxidant reactivity and molecular structure of phenols by means of two coupled assays using fluorescence probe (2,3-diazabicyclo[2.2.2]oct-2-ene, DBO) and free radical (2,2-diphenyl-1-picrylhydrazyl, \$\$hbox {DPPH}^{cdot }\$\$ DPPH A·). Journal of Chemical Sciences, 2017, 129, 1381-1390.	1.5	6
27	Characterization of a bacterioruberinâ€producing <scp>H</scp> aloarchaea isolated from the marshlands of the <scp>O</scp> diel river in the southwest of <scp>S</scp> pain. Biotechnology Progress, 2016, 32, 592-600.	2.6	44
28	Extraction and Determination of Phenolic Compounds in the Berries of Sorbus americana Marsh and Lonicera oblongifolia (Goldie) Hook. Food Analytical Methods, 2015, 8, 2554-2559.	2.6	15
29	Determination of phenolic compounds in olive oil: New method based on liquid–liquid micro extraction and ultra high performance liquid chromatography-triple–quadrupole mass spectrometry. LWT - Food Science and Technology, 2014, 57, 49-57.	5.2	49
30	Sustainable Preparation of Cardanol-Based Nanocarriers with Embedded Natural Phenolic Compounds. ACS Sustainable Chemistry and Engineering, 2014, 2, 1299-1304.	6.7	31
31	Comparison of Different Extraction Methods to Determine Phenolic Compounds in Virgin Olive Oil. Food Analytical Methods, 2013, 6, 123-132.	2.6	45
32	Logit modeling for classification of monocultivar olive oils from southwest Spain: A preliminary study. European Journal of Lipid Science and Technology, 2011, 113, 1499-1508.	1.5	0
33	Evaluation of α-tocopherol in virgin olive oil by a luminescent method. Grasas Y Aceites, 2009, 60, 336-342.	0.9	23
34	Detection of the Presence of Refined Hazelnut Oil in Refined Olive Oil by Fluorescence Spectroscopy. Journal of Agricultural and Food Chemistry, 2007, 55, 2068-2071.	5.2	36
35	Spectrophotometric evaluation of stability constants of 1 : 1 weak complexes from mole ratio data using the bilogarithmic hyperbolic cosine method. Journal of Analytical Chemistry, 2007, 62, 840-844.	0.9	3
36	The Correlation Coefficient: An Overview. Critical Reviews in Analytical Chemistry, 2006, 36, 41-59.	3.5	721

Ana Sayago

#	Article	IF	CITATIONS
37	The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Research International, 2006, 39, 220-229.	6.2	125
38	A bilogarithmic method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from mole ratio data. International Journal of Pharmaceutics, 2006, 318, 70-77.	5.2	12
39	Spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data. International Journal of Pharmaceutics, 2006, 321, 94-100.	5.2	9
40	Acid-base equilibria of biacetylmonoxime-isonicotinoylhydrazone. Journal of Analytical Chemistry, 2006, 61, 393-395.	0.9	3
41	The correlation coefficient attacks again. Accreditation and Quality Assurance, 2006, 11, 256-258.	0.8	25
42	Continuous variation data: 1:1 or 2:2 weak complexes?. International Journal of Pharmaceutics, 2005, 295, 29-34.	5.2	9
43	Fitting Straight Lines with Replicated Observations by Linear Regression: The Least Squares Postulates. Critical Reviews in Analytical Chemistry, 2004, 34, 39-50.	3.5	41
44	Detection of hazelnut oil in virgin olive oil by a spectrofluorimetric method. European Food Research and Technology, 2004, 218, 480-483.	3.3	87
45	Fitting Straight Lines with Replicated Observations by Linear Regression: Part II. Testing for Homogeneity of Variances. Critical Reviews in Analytical Chemistry, 2004, 34, 133-146.	3.5	35
46	Optimization of an HPLC-HG-AFS method for screening Sb(v), Sb(iii), and Me3SbBr2in water samples. Journal of Analytical Atomic Spectrometry, 2002, 17, 1400-1404.	3.0	23
47	Hydride generation atomic fluorescence spectrometry (HG-AFS) as a sensitive detector for Sb(iii) and Sb(v) speciation in water. Journal of Analytical Atomic Spectrometry, 2000, 15, 423-428.	3.0	38