
José Manuel Bravo San Pedro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5162886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroprotective properties of queen bee acid by autophagy induction. Cell Biology and Toxicology, 2023, 39, 751-770.	2.4	7
2	Immunization of mice with the self-peptide ACBP coupled to keyhole limpet hemocyanin. STAR Protocols, 2022, 3, 101095.	0.5	3
3	Autophagy Alteration in ApoA-I Related Systemic Amyloidosis. International Journal of Molecular Sciences, 2022, 23, 3498.	1.8	3
4	An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABAA receptor. Cell Death and Disease, 2022, 13, 356.	2.7	5
5	Autophagy in the cancer-immunity dialogue. Advanced Drug Delivery Reviews, 2021, 169, 40-50.	6.6	46
6	Targeting Autophagy to Counteract Obesity-Associated Oxidative Stress. Antioxidants, 2021, 10, 102.	2.2	32
7	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
8	Clonogenic Assays to Detect Cell Fate in Mitotic Catastrophe. Methods in Molecular Biology, 2021, 2267, 227-239.	0.4	3
9	Quantification of intracellular ACBP/DBI levels. Methods in Cell Biology, 2021, 165, 111-122.	0.5	2
10	Paradoxical implication of BAX/BAK in the persistence of tetraploid cells. Cell Death and Disease, 2021, 12, 1039.	2.7	7
11	Oxidative phosphorylation as a potential therapeutic target for cancer therapy. International Journal of Cancer, 2020, 146, 10-17.	2.3	125
12	Acyl-CoA-binding protein (ACBP): a phylogenetically conserved appetite stimulator. Cell Death and Disease, 2020, 11, 7.	2.7	34
13	Autophagy in hepatic adaptation to stress. Journal of Hepatology, 2020, 72, 183-196.	1.8	120
14	Autophagy assessment in circulating leukocytes. Methods in Cell Biology, 2020, 164, 39-46.	0.5	0
15	Genotoxic stress triggers the activation of IRE1α-dependent RNA decay to modulate the DNA damage response. Nature Communications, 2020, 11, 2401.	5.8	62
16	Antibody-mediated neutralization of ACBP/DBI has anorexigenic and lipolytic effects. Adipocyte, 2020, 9, 116-119.	1.3	7
17	Impaired Mitophagy and Protein Acetylation Levels in Fibroblasts from Parkinson's Disease Patients. Molecular Neurobiology, 2019, 56, 2466-2481.	1.9	50
18	Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity. Cell Metabolism, 2019, 30, 754-767.e9.	7.2	67

#	Article	IF	CITATIONS
19	Artificial tethering of LC3 or p62 to organelles is not sufficient to trigger autophagy. Cell Death and Disease, 2019, 10, 771.	2.7	15
20	Pseudodiabetes—not a contraindication for metabolic interventions. Cell Death and Disease, 2019, 10, 765.	2.7	2
21	The elusive "hunger proteinâ€i an appetite-stimulatory factor that is overabundant in human obesity. Molecular and Cellular Oncology, 2019, 6, e1667193.	0.3	5
22	Cell-autonomous, paracrine and neuroendocrine feedback regulation of autophagy by DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein): the obesity factor. Autophagy, 2019, 15, 2036-2038.	4.3	16
23	A strategy for poisoning cancer cell metabolism: Inhibition of oxidative phosphorylation coupled to anaplerotic saturation. International Review of Cell and Molecular Biology, 2019, 347, 27-37.	1.6	6
24	Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl α-Ketoglutarate. Cell Reports, 2019, 27, 820-834.e9.	2.9	36
25	Acyl-CoA-binding protein (ACBP): the elusive â€~hunger factor' linking autophagy to food intake. Cell Stress, 2019, 3, 312-318.	1.4	19
26	The autophagic network and cancer. Nature Cell Biology, 2018, 20, 243-251.	4.6	233
27	ER–mitochondria signaling in Parkinson's disease. Cell Death and Disease, 2018, 9, 337.	2.7	118
28	Evaluation of autophagy inducers in epithelial cells carrying the ΔF508 mutation of the cystic fibrosis transmembrane conductance regulator CFTR. Cell Death and Disease, 2018, 9, 191.	2.7	19
29	Mitochondrial metabolism and cancer. Cell Research, 2018, 28, 265-280.	5.7	818
30	Calcium signaling and cell cycle: Progression or death. Cell Calcium, 2018, 70, 3-15.	1.1	152
31	Acetylome in Human Fibroblasts From Parkinson's Disease Patients. Frontiers in Cellular Neuroscience, 2018, 12, 97.	1.8	15
32	Involvement of autophagy in NK cell development and function. Autophagy, 2017, 13, 633-636.	4.3	27
33	Metabolic effects of fasting on human and mouse blood in vivo. Autophagy, 2017, 13, 567-578.	4.3	75
34	Metabolic interactions between cysteamine and epigallocatechin gallate. Cell Cycle, 2017, 16, 271-279.	1.3	17
35	Mitophagy: Permitted by Prohibitin. Current Biology, 2017, 27, R73-R76.	1.8	7
36	Assessment of Glycolytic Flux and Mitochondrial Respiration in the Course of Autophagic Responses. Methods in Enzymology, 2017, 588, 155-170.	0.4	6

#	Article	IF	CITATIONS
37	Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nature Reviews Drug Discovery, 2017, 16, 487-511.	21.5	642
38	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
39	Autophagy in natural and therapy-driven anticancer immunosurveillance. Autophagy, 2017, 13, 2163-2170.	4.3	52
40	Autophagy and Mitophagy in Cardiovascular Disease. Circulation Research, 2017, 120, 1812-1824.	2.0	559
41	Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nature Reviews Clinical Oncology, 2017, 14, 247-258.	12.5	261
42	Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease. Molecular Neurobiology, 2017, 54, 6287-6303.	1.9	60
43	High-Throughput Quantification of GFP-LC3+ Dots by Automated Fluorescence Microscopy. Methods in Enzymology, 2017, 587, 71-86.	0.4	20
44	Inhibitor of growth protein 4 interacts with Beclin 1 and represses autophagy. Oncotarget, 2017, 8, 89527-89538.	0.8	4
45	Mitochondria: Key Organelle in Parkinson's Disease. Parkinson's Disease, 2016, 2016, 1-2.	0.6	3
46	Mitophagy. , 2016, , 91-104.		1
47	Defective Autophagy Initiates Malignant Transformation. Molecular Cell, 2016, 62, 473-474.	4.5	21
48	Regulated cell death and adaptive stress responses. Cellular and Molecular Life Sciences, 2016, 73, 2405-2410.	2.4	121
49	mRNA and protein dataset of autophagy markers (LC3 and p62) in several cell lines. Data in Brief, 2016, 7, 641-647.	0.5	39
50	Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties. Trends in Cell Biology, 2016, 26, 655-667.	3.6	172
51	The Basics of Autophagy. , 2016, , 3-20.		6
52	Autophagy in acute brain injury. Nature Reviews Neuroscience, 2016, 17, 467-484.	4.9	174
53	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
54	PINK1 deficiency enhances autophagy and mitophagy induction. Molecular and Cellular Oncology, 2016, 3, e1046579.	0.3	18

#	Article	IF	CITATIONS
55	Autophagy Mediates Tumor Suppression via Cellular Senescence. Trends in Cell Biology, 2016, 26, 1-3.	3.6	41
56	IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis. Journal of the Association for Laboratory Automation, 2016, 21, 246-259.	2.8	7
57	Biosimilar Filgrastim in Autologous Peripheral Blood Hematopoietic Stem Cell Mobilization and Post-Transplant Hematologic Recovery. Current Medicinal Chemistry, 2016, 23, 2217-2229.	1.2	12
58	Pompe Disease and Autophagy: Partners in Crime, or Cause and Consequence?. Current Medicinal Chemistry, 2016, 23, 2275-2285.	1.2	6
59	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	2.2	317
60	Routine Western blot to check autophagic flux: Cautions and recommendations. Analytical Biochemistry, 2015, 477, 13-20.	1.1	25
61	Acetyl Coenzyme A: A Central Metabolite and Second Messenger. Cell Metabolism, 2015, 21, 805-821.	7.2	963
62	Unsaturated fatty acids induce non anonical autophagy. EMBO Journal, 2015, 34, 1025-1041.	3.5	147
63	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	3.5	1,012
64	BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy, 2015, 11, 452-459.	4.3	79
65	Novel inducers of BECN1-independent autophagy: <i>cis</i> -unsaturated fatty acids. Autophagy, 2015, 11, 575-577.	4.3	13
66	Necrosis: Linking the Inflammasome to Inflammation. Cell Reports, 2015, 11, 1501-1502.	2.9	7
67	Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death and Differentiation, 2015, 22, 1237-1238.	5.0	41
68	Novel function of cytoplasmic p53 at the interface between mitochondria and the endoplasmic reticulum. Cell Death and Disease, 2015, 6, e1698-e1698.	2.7	11
69	elF2α phosphorylation as a biomarker of immunogenic cell death. Seminars in Cancer Biology, 2015, 33, 86-92.	4.3	95
70	Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 2015, 350, 972-978.	6.0	367
71	Organelle-Specific Initiation of Autophagy. Molecular Cell, 2015, 59, 522-539.	4.5	176
72	Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death and Differentiation, 2015, 22, 509-516.	5.0	237

#	Article	IF	CITATIONS
73	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
74	Morphometric analysis of immunoselection against hyperploid cancer cells. Oncotarget, 2015, 6, 41204-41215.	0.8	13
75	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
76	Novel insights into the mitochondrial permeability transition. Cell Cycle, 2014, 13, 2666-2670.	1.3	19
77	An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncolmmunology, 2014, 3, e944047.	2.1	68
78	Organelle-specific initiation of cell death. Nature Cell Biology, 2014, 16, 728-736.	4.6	198
79	G2019S LRRK2 mutant fibroblasts from Parkinson's disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy. Toxicology, 2014, 324, 1-9.	2.0	40
80	Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiology of Disease, 2014, 62, 426-440.	2.1	49
81	The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cellular and Molecular Life Sciences, 2013, 70, 121-136.	2.4	148
82	Autophagy, mitochondria and 3â€nitropropionic acid joined in the same model. British Journal of Pharmacology, 2013, 168, 60-62.	2.7	5
83	Immunostimulatory activity of lifespan-extending agents. Aging, 2013, 5, 793-801.	1.4	27
84	Possible involvement of the relationship of LRRK2 and autophagy in Parkinson's disease. Biochemical Society Transactions, 2012, 40, 1129-1133.	1.6	4
85	The MAPK1/3 pathway is essential for the deregulation of autophagy observed in G2019S LRRK2 mutant fibroblasts. Autophagy, 2012, 8, 1537-1539.	4.3	23
86	Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies. Parkinson's Disease, 2012, 2012, 1-9.	0.6	6
87	Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y. NeuroToxicology, 2011, 32, 935-943.	1.4	70
88	ASK1 Overexpression Accelerates Paraquat-Induced Autophagy via Endoplasmic Reticulum Stress. Toxicological Sciences, 2011, 119, 156-168.	1.4	48
89	Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 2010, 48, 1370-1381.	1.3	120
90	DJ-1 as a Modulator of Autophagy: An Hypothesis. Scientific World Journal, The, 2010, 10, 1574-1579.	0.8	4

#	Article	IF	CITATIONS
91	Paraquat Exposure Induces Nuclear Translocation of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and the Activation of the Nitric Oxide-GAPDH-Siah Cell Death Cascade. Toxicological Sciences, 2010, 116, 614-622.	1.4	28
92	Curcumin exposure induces expression of the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neuroscience Letters, 2010, 468, 120-124.	1.0	27
93	The neuroprotective effect of talipexole from paraquat-induced cell death in dopaminergic neuronal cells. NeuroToxicology, 2010, 31, 701-708.	1.4	8
94	Effect of paraquat exposure on nitric oxide-responsive genes in rat mesencephalic cells. Nitric Oxide - Biology and Chemistry, 2010, 23, 51-59.	1.2	13
95	Nitric Oxide-Mediated Toxicity in Paraquat-Exposed SH-SY5Y Cells: A Protective Role of 7-Nitroindazole. Neurotoxicity Research, 2009, 16, 160-173.	1.3	30
96	Silencing DJâ€1 reveals its contribution in paraquatâ€induced autophagy. Journal of Neurochemistry, 2009, 109, 889-898.	2.1	71
97	Curcumin enhances paraquat-induced apoptosis of N27 mesencephalic cells via the generation of reactive oxygen species. NeuroToxicology, 2009, 30, 1008-1018.	1.4	30