
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5162844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small-scale manufacturing of neoantigen-encoding messenger RNA for early-phase clinical trials. Cytotherapy, 2022, 24, 213-222.	0.3	8
2	PRL3 enhances T-cell acute lymphoblastic leukemia growth through suppressing T-cell signaling pathways and apoptosis. Leukemia, 2021, 35, 679-690.	3.3	11
3	A Tumor Suppressor Enhancer of <i>PTEN</i> in T-cell Development and Leukemia. Blood Cancer Discovery, 2021, 2, 92-109.	2.6	15
4	Thymic Epithelial Cell Alterations and Defective Thymopoiesis Lead to Central and Peripheral Tolerance Perturbation in MHCII Deficiency. Frontiers in Immunology, 2021, 12, 669943.	2.2	8
5	A DL-4- and TNFα-based culture system to generate high numbers of nonmodified or genetically modified immunotherapeutic human T-lymphoid progenitors. Cellular and Molecular Immunology, 2021, 18, 1662-1676.	4.8	6
6	The RNA Atlas expands the catalog of human non-coding RNAs. Nature Biotechnology, 2021, 39, 1453-1465.	9.4	75
7	<i>In vitro</i> OP9-DL1 co-culture and subsequent maturation in the presence of IL-21 generates tumor antigen-specific T cells with a favorable less-differentiated phenotype and enhanced functionality. Oncolmmunology, 2021, 10, 1954800.	2.1	3
8	Modeling of human T cell development <i>in vitro</i> as a read-out for hematopoietic stem cell multipotency. Biochemical Society Transactions, 2021, 49, 2113-2122.	1.6	2
9	T-BET and EOMES Accelerate and Enhance Functional Differentiation of Human Natural Killer Cells. Frontiers in Immunology, 2021, 12, 732511.	2.2	Ο
10	T-BET and EOMES Accelerate and Enhance Functional Differentiation of Human Natural Killer Cells. Frontiers in Immunology, 2021, 12, 732511.	2.2	24
11	Large-scale circular RNA deregulation in T-ALL: unlocking unique ectopic expression of molecular subtypes. Blood Advances, 2020, 4, 5902-5914.	2.5	39
12	PHF6 Expression Levels Impact Human Hematopoietic Stem Cell Differentiation. Frontiers in Cell and Developmental Biology, 2020, 8, 599472.	1.8	8
13	Human Thymic CD10+ PD-1+ Intraepithelial Lymphocyte Precursors Acquire Interleukin-15 Responsiveness at the CD1a– CD95+ CD28– CCR7– Developmental Stage. International Journal of Molecular Sciences, 2020, 21, 8785.	1.8	7
14	Conventional and Computational Flow Cytometry Analyses Reveal Sustained Human Intrathymic T Cell Development From Birth Until Puberty. Frontiers in Immunology, 2020, 11, 1659.	2.2	3
15	Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδT cell development. Nature Immunology, 2020, 21, 1280-1292.	7.0	43
16	HES1 and HES4 have non-redundant roles downstream of Notch during early human T-cell development. Haematologica, 2020, 106, 130-141.	1.7	20
17	Distinct Notch1 and <i>BCL11B</i> requirements mediate human γδ/αβ T cell development. EMBO Reports, 2020, 21, e49006.	2.0	31
18	Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood, 2020, 135, 1685-1695.	0.6	28

#	Article	IF	CITATIONS
19	hsa-miR-20b-5p and hsa-miR-363-3p Affect Expression of PTEN and BIM Tumor Suppressor Genes and Modulate Survival of T-ALL Cells In Vitro. Cells, 2020, 9, 1137.	1.8	23
20	The transcription factor ETS1 is an important regulator of human NK cell development and terminal differentiation. Blood, 2020, 136, 288-298.	0.6	33
21	T-cells with a single tumor antigen-specific T-cell receptor can be generated <i>in vitro</i> from clinically relevant stem cell sources. OncoImmunology, 2020, 9, 1727078.	2.1	4
22	A cell atlas of human thymic development defines T cell repertoire formation. Science, 2020, 367, .	6.0	368
23	Treatment of a patient with severe cytomegalovirus (CMV) infection after haploidentical stem cell transplantation with donor-derived CMV-specific T cells. Acta Clinica Belgica, 2020, 76, 1-5.	0.5	1
24	Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes. Immunity, 2020, 52, 1088-1104.e6.	6.6	79
25	Posttranslational Regulation of the Exon Skipping Machinery Controls Aberrant Splicing in Leukemia. Cancer Discovery, 2020, 10, 1388-1409.	7.7	37
26	Aging of Preleukemic Thymocytes Drives CpG Island Hypermethylation in T-cell Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 274-289.	2.6	21
27	ZEB2 in T-cells and T-ALL. Advances in Biological Regulation, 2019, 74, 100639.	1.4	7
28	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	6.6	384
29	ZEB2 and LMO2 drive immature T-cell lymphoblastic leukemia via distinct oncogenic mechanisms. Haematologica, 2019, 104, 1608-1616.	1.7	22
30	Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Science Translational Medicine, 2019, 11, .	5.8	74
31	T-cell acute lymphoblastic leukemias express a unique truncated FAT1 isoform that cooperates with NOTCH1 in leukemia development. Haematologica, 2019, 104, e204-e207.	1.7	6
32	S860 TARGETING ABERRANT DNA METHYLATION AS A NOVEL AND UNIFORM THERAPEUTIC STRATEGY FOR THE TREATMENT OF T ELL ACUTE LYMPHOBLASTIC LEUKEMIA AND LYMPHOMA. HemaSphere, 2019, 3, 384-385.	1.2	0
33	PS920ÂPHF6ÂLOSS DRIVES IL7R ONCOGENE ADDICTION IN TLX1 DRIVEN Tâ€ALL. HemaSphere, 2019, 3, 414-41	51.2	0
34	Generation of adult human T-cell progenitors for immunotherapeutic applications. Journal of Allergy and Clinical Immunology, 2018, 141, 1491-1494.e4.	1.5	15
35	Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation. Cancer Discovery, 2018, 8, 1614-1631.	7.7	30
36	SHQ1 regulation of RNA splicing is required for T-lymphoblastic leukemia cell survival. Nature Communications, 2018, 9, 4281.	5.8	24

#	Article	IF	CITATIONS
37	A comprehensive inventory of TLX1 controlled long non-coding RNAs in T-cell acute lymphoblastic leukemia through polyA+ and total RNA sequencing. Haematologica, 2018, 103, e585-e589.	1.7	20
38	T-ALL and thymocytes: a message of noncoding RNAs. Journal of Hematology and Oncology, 2017, 10, 66.	6.9	24
39	Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncolmmunology, 2017, 6, e1283460.	2.1	22
40	Human T cell development notched up a level. Nature Methods, 2017, 14, 477-478.	9.0	1
41	A Murine Intestinal Intraepithelial NKp46-Negative Innate Lymphoid Cell Population Characterized by Group 1 Properties. Cell Reports, 2017, 19, 1431-1443.	2.9	24
42	The checkpoint for agonist selection precedes conventional selection in human thymus. Science Immunology, 2017, 2, .	5.6	40
43	Comprehensive miRNA expression profiling in human T-cell acute lymphoblastic leukemia by small RNA-sequencing. Scientific Reports, 2017, 7, 7901.	1.6	49
44	The Ly49E Receptor Inhibits the Immune Control of Acute Trypanosoma cruzi Infection. Frontiers in Immunology, 2016, 7, 472.	2.2	5
45	GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nature Communications, 2016, 7, 11171.	5.8	57
46	Long noncoding RNA signatures define oncogenic subtypes in T-cell acute lymphoblastic leukemia. Leukemia, 2016, 30, 1927-1930.	3.3	32
47	A quantitative proteomics approach identifies ETV6 and IKZF1 as new regulators of an <i>ERG</i> -driven transcriptional network. Nucleic Acids Research, 2016, 44, 10644-10661.	6.5	17
48	Persistentrotavirusdiarrhea post-transplant in a novelJAK3-SCID patient after vaccination. Pediatric Allergy and Immunology, 2016, 27, 93-96.	1.1	17
49	NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. Journal of Experimental Medicine, 2016, 213, 1973-1981.	4.2	31
50	Expression of the inhibitory Ly49E receptor is not critically involved in the immune response against cutaneous, pulmonary or liver tumours. Scientific Reports, 2016, 6, 30564.	1.6	7
51	The role of Ly49E receptor expression on murine intraepithelial lymphocytes in intestinal cancer development and progression. Cancer Immunology, Immunotherapy, 2016, 65, 1365-1375.	2.0	4
52	Characterization and Isolation of Human T Cell Progenitors. Methods in Molecular Biology, 2016, 1323, 221-237.	0.4	3
53	Approaches to Study Human T Cell Development. Methods in Molecular Biology, 2016, 1323, 239-251.	0.4	2
54	The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood, 2015, 125, 13-21.	0.6	168

#	Article	IF	CITATIONS
55	ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nature Communications, 2015, 6, 5794.	5.8	75
56	In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica, 2015, 100, 157-166.	1.7	40
57	Characterization of the genome-wide TLX1 binding profile in T-cell acute lymphoblastic leukemia. Leukemia, 2015, 29, 2317-2327.	3.3	23
58	Epigenetics in Tâ€cell acute lymphoblastic leukemia. Immunological Reviews, 2015, 263, 50-67.	2.8	61
59	MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia. Leukemia, 2015, 29, 798-806.	3.3	91
60	Chimeric Antigen Receptor Transgenic, T Cell Receptor/CD3 Negative Monospecific T Cells Generated from Cord Blood CD34 Positive Cells. Blood, 2015, 126, 3087-3087.	0.6	1
61	Contribution of the Ly49E Natural Killer Receptor in the Immune Response to Plasmodium berghei Infection and Control of Hepatic Parasite Development. PLoS ONE, 2014, 9, e87463.	1.1	4
62	Integrative Genomic and Transcriptomic Analysis Identified Candidate Genes Implicated in the Pathogenesis of Hepatosplenic T-Cell Lymphoma. PLoS ONE, 2014, 9, e102977.	1.1	48
63	Ly49E Expression on CD8αα-Expressing Intestinal Intraepithelial Lymphocytes Plays No Detectable Role in the Development and Progression of Experimentally Induced Inflammatory Bowel Diseases. PLoS ONE, 2014, 9, e110015.	1.1	9
64	Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia. Science Signaling, 2014, 7, ra111.	1.6	36
65	MicroRNA-128-3p is a novel oncomiR targeting PHF6 in T-cell acute lymphoblastic leukemia. Haematologica, 2014, 99, 1326-1333.	1.7	55
66	In vitro generation of mature, naive antigen-specific CD8+ T cells with a single T-cell receptor by agonist selection. Leukemia, 2014, 28, 830-841.	3.3	19
67	Notch3 Activation Is Sufficient but Not Required for Inducing Human T-Lineage Specification. Journal of Immunology, 2014, 193, 5997-6004.	0.4	17
68	The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia. Haematologica, 2014, 99, 1808-1816.	1.7	50
69	ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood, 2014, 124, 3738-3747.	0.6	198
70	The NOTCH1 Driven Long Non-Coding RNA Repertoire in T-Cell Acute Lymphoblastic Leukemia. Blood, 2014, 124, 900-900.	0.6	0
71	Transcriptional Antagonism Between the Cooperative Oncogenes TLX1 and NOTCH1 in T-Cell Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3588-3588.	0.6	0
72	Primate lentiviral Nef proteins deregulate T-cell development by multiple mechanisms. Retrovirology, 2013, 10, 137.	0.9	4

#	Article	IF	CITATIONS
73	Abundant stage-dependent Ly49E expression by liver NK cells is not essential for their differentiation and function. Journal of Leukocyte Biology, 2013, 93, 699-711.	1.5	18
74	Specific Notch receptor–ligand interactions control human TCR-αβ/γÎ′ development by inducing differential Notch signal strength. Journal of Experimental Medicine, 2013, 210, 683-697.	4.2	95
75	Differential <i>Ly49e</i> Expression Pathways in Resting versus TCR-Activated Intraepithelial γδT Cells. Journal of Immunology, 2013, 190, 1982-1990.	0.4	12
76	Specific Notch receptor–ligand interactions control human TCR-ab/gd development by inducing differential Notch signal strength. Journal of Cell Biology, 2013, 201, i2-i2.	2.3	0
77	Notch induces human T-cell receptor γδ+ thymocytes to differentiate along a parallel, highly proliferative and bipotent CD4 CD8 double-positive pathway. Leukemia, 2012, 26, 127-138.	3.3	26
78	RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia. Haematologica, 2012, 97, 1539-1547.	1.7	32
79	Notch Signaling During Human T cell Development. Current Topics in Microbiology and Immunology, 2012, 360, 75-97.	0.7	50
80	Quantification of Reverse Transcriptase Activity by Real-Time PCR as a Fast and Accurate Method for Titration of HIV, Lenti- and Retroviral Vectors. PLoS ONE, 2012, 7, e50859.	1.1	165
81	A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature Genetics, 2011, 43, 673-678.	9.4	244
82	In vitro generation of immune cells from pluripotent stem cells. Frontiers in Bioscience - Landmark, 2011, 16, 1488.	3.0	8
83	T-lymphoid differentiation potential measured in vitro is higher in CD34+CD38-/lo hematopoietic stem cells from umbilical cord blood than from bone marrow and is an intrinsic property of the cells. Haematologica, 2011, 96, 646-654.	1.7	33
84	Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood, 2011, 117, 4449-4459.	0.6	89
85	Inhibitory receptors specific for MHC class I educate murine NK cells but not CD8αα intestinal intraepithelial T lymphocytes. Blood, 2011, 118, 339-347.	0.6	15
86	EVI1 <i>â€</i> mediated down regulation of <i>MIR449A</i> is essential for the survival of EVI1 positive leukaemic cells. British Journal of Haematology, 2011, 154, 337-348.	1.2	20
87	A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 2011, 473, 230-233.	13.7	351
88	CD27â€deficient mice show normal NKâ€cell differentiation but impaired function upon stimulation. Immunology and Cell Biology, 2011, 89, 803-811.	1.0	26
89	Langerhans cells are not required for epidermal Vγ3 T cell homeostasis and function. Journal of Leukocyte Biology, 2011, 90, 61-68.	1.5	10
90	Regulatory Networks Governed by MicroRNAs in T-ALL Oncogenesis and Normal T-Cell Development. Blood, 2011, 118, 1366-1366.	0.6	0

#	Article	IF	CITATIONS
91	Continuous CD27 triggering <i>in vivo</i> strongly reduces NK cell numbers. European Journal of Immunology, 2010, 40, 1107-1117.	1.6	23
92	PHF6 mutations in T-cell acute lymphoblastic leukemia. Nature Genetics, 2010, 42, 338-342.	9.4	282
93	Functionally Mature CD4 and CD8 TCRαβ Cells Are Generated in OP9-DL1 Cultures from Human CD34+ Hematopoietic Cells. Journal of Immunology, 2009, 183, 4859-4870.	0.4	46
94	Generation of T Cells from Human Embryonic Stem Cell-Derived Hematopoietic Zones. Journal of Immunology, 2009, 182, 6879-6888.	0.4	186
95	An early decrease in Notch activation is required for human TCR- $\hat{l}\pm\hat{l}^2$ lineage differentiation at the expense of TCR- $\hat{l}^{3}\hat{l}$ T cells. Blood, 2009, 113, 2988-2998.	0.6	97
96	Notch signaling is required for proliferation but not for differentiation at a well-defined β-selection checkpoint during human T-cell development. Blood, 2009, 113, 3254-3263.	0.6	70
97	CD4 and CD8 TCRαβ Cells Are selected On MHC Expressed On Thymocyte Precursors in OP9-DL1 Cultures Blood, 2009, 114, 3670-3670.	0.6	1
98	Regulation of early T cell development in mouse and human by Notch. Verhandelingen - Koninklijke Academie Voor Geneeskunde Van België, 2009, 71, 301-14.	0.2	0
99	Molecular mechanisms that control mouse and human TCR-αβ and TCR-γδT cell development. Seminars in Immunopathology, 2008, 30, 383-398.	2.8	53
100	Human intrathymic development: a selective approach. Seminars in Immunopathology, 2008, 30, 411-423.	2.8	29
101	Ly49E-dependent inhibition of natural killer cells by urokinase plasminogen activator. Blood, 2008, 112, 5046-5051.	0.6	20
102	Stageâ€dependent molecular changes in Notch signaling are critical for normal human T cell development. FASEB Journal, 2008, 22, 844.3.	0.2	0
103	MicroRNA signatures in Genetic Subtypes of T-Cell Acute Lymphoblastic Leukemia Blood, 2008, 112, 3360-3360.	0.6	1
104	Generation of T Cells from Human Embryonic Stem Cells Blood, 2008, 112, 1527-1527.	0.6	0
105	Molecular Dissection of Prethymic Progenitor Entry into the T Lymphocyte Developmental Pathway. Journal of Immunology, 2007, 179, 421-438.	0.4	89
106	Notch signaling induces cytoplasmic CD3ïµ expression in human differentiating NK cells. Blood, 2007, 110, 2696-2703.	0.6	53
107	Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nature Immunology, 2007, 8, 845-855.	7.0	175
108	Tumor necrosis factor promotes T-cell at the expense of B-cell lymphoid development from cultured human CD34+ cord blood cells. Experimental Hematology, 2007, 35, 1272-1278.	0.2	6

#	Article	IF	CITATIONS
109	Developmental and Molecular Characterization of Emerging β- and γδ-Selected Pre-T Cells in the Adult Mouse Thymus. Immunity, 2006, 24, 53-64.	6.6	278
110	Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunological Reviews, 2006, 209, 212-236.	2.8	62
111	Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11993-11998.	3.3	100
112	MOLECULAR GENETICS OF T CELL DEVELOPMENT. Annual Review of Immunology, 2005, 23, 601-649.	9.5	240
113	Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia, 2003, 17, 1157-1163.	3.3	57
114	Active Form of Notch Imposes T Cell Fate in Human Progenitor Cells. Journal of Immunology, 2002, 169, 3021-3029.	0.4	100
115	HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood, 2002, 99, 1197-1204.	0.6	64
116	Enforced Expression of GATA-3 Severely Reduces Human Thymic Cellularity. Journal of Immunology, 2001, 167, 4468-4475.	0.4	37
117	Langerhans Cells That Have Matured In Vivo in the Absence of T Cells Are Fully Capable of Inducing a Helper CD4 as Well as a Cytotoxic CD8 Response. Journal of Immunology, 2000, 165, 645-653.	0.4	19
118	Multiomics to investigate the mechanisms contributing to repression of <i>PTPRC</i> and <i>SOCS2</i> in pediatric Tâ€ALL: Focus on miRâ€363â€3p and promoter methylation. Genes Chromosomes and Cancer, 0, , .	1.5	1