Joerg H Schrittwieser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5162500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chemical Reviews, 2018, 118, 270-348.	23.0	484
2	Multiâ€Enzymatic Cascade Reactions: Overview and Perspectives. Advanced Synthesis and Catalysis, 2011, 353, 2239-2262.	2.1	433
3	Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis and Catalysis, 2015, 357, 1655-1685.	2.1	193
4	Power of Biocatalysis for Organic Synthesis. ACS Central Science, 2021, 7, 55-71.	5.3	186
5	Recent biocatalytic oxidation–reduction cascades. Current Opinion in Chemical Biology, 2011, 15, 249-256.	2.8	157
6	Recent trends and novel concepts in cofactor-dependent biotransformations. Applied Microbiology and Biotechnology, 2014, 98, 1517-1529.	1.7	123
7	Novel carbon–carbon bond formations for biocatalysis. Current Opinion in Biotechnology, 2011, 22, 793-799.	3.3	77
8	One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols. Green Chemistry, 2013, 15, 3318.	4.6	75
9	Deracemization By Simultaneous Bioâ€oxidative Kinetic Resolution and Stereoinversion. Angewandte Chemie - International Edition, 2014, 53, 3731-3734.	7.2	73
10	Biocatalytic Enantioselective Oxidative Cĩ£¿C Coupling by Aerobic Cĩ£¿H Activation. Angewandte Chemie - International Edition, 2011, 50, 1068-1071.	7.2	72
11	Access to Lactone Building Blocks via Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactonization. ACS Catalysis, 2013, 3, 2436-2439.	5.5	71
12	Immobilization of ï‰-transaminases by encapsulation in a sol–gel/celite matrix. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 39-44.	1.8	68
13	Biocatalytic Organic Synthesis of Optically Pure (S)-Scoulerine and Berbine and Benzylisoquinoline Alkaloids. Journal of Organic Chemistry, 2011, 76, 6703-6714.	1.7	66
14	Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents. Chemical Communications, 2010, 46, 8046.	2.2	65
15	The role of biocatalysis in the asymmetric synthesis of alkaloids. RSC Advances, 2013, 3, 17602.	1.7	63
16	(Chemo)enzymatic cascades—Nature's synthetic strategy transferred to the laboratory. Journal of Molecular Catalysis B: Enzymatic, 2015, 114, 1-6.	1.8	61
17	More efficient redox biocatalysis by utilising 1,4-butanediol as a â€~smart cosubstrate'. Green Chemistry, 2013, 15, 330.	4.6	56
18	Old Yellow Enzymeâ€Catalyzed Dehydrogenation of Saturated Ketones. Advanced Synthesis and Catalysis, 2011, 353, 268-274.	2.1	54

JOERG H SCHRITTWIESER

#	Article	IF	CITATIONS
19	Biocatalytic Cascade for the Synthesis of Enantiopure βâ€Azidoalcohols and βâ€Hydroxynitriles. European Journal of Organic Chemistry, 2009, 2009, 2293-2298.	1.2	53
20	Sequenceâ€Based <i>Inâ€silico</i> Discovery, Characterisation, and Biocatalytic Application of a Set of Imine Reductases. ChemCatChem, 2018, 10, 3236-3246.	1.8	46
21	Vicinal Diamines as Smart Cosubstrates in the Transaminaseâ€Catalyzed Asymmetric Amination of Ketones. European Journal of Organic Chemistry, 2017, 2017, 2553-2559.	1.2	39
22	Stereoselective Biotransformations of Cyclic Imines in Recombinant Cells of <i>Synechocystis</i> sp. PCC 6803. ChemCatChem, 2020, 12, 726-730.	1.8	34
23	Stereoselective synthesis of γ-hydroxynorvaline through combination of organo- and biocatalysis. Chemical Communications, 2014, 50, 15669-15672.	2.2	33
24	Biocatalytic Oxidative CC Bond Formation Catalysed by the Berberine Bridge Enzyme: Optimal Reaction Conditions. Advanced Synthesis and Catalysis, 2011, 353, 2377-2383.	2.1	30
25	Inverting the Regioselectivity of the Berberine Bridge Enzyme by Employing Customized Fluorineâ€Containing Substrates. Chemistry - A European Journal, 2012, 18, 13173-13179.	1.7	29
26	Deracemisation of benzylisoquinoline alkaloids employing monoamine oxidase variants. Catalysis Science and Technology, 2014, 4, 3657-3664.	2.1	26
27	Complete Enzymatic Oxidation of Methanol to Carbon Dioxide: Towards More Ecoâ€Efficient Regeneration Systems for Reduced Nicotinamide Cofactors. Advanced Synthesis and Catalysis, 2015, 357, 1687-1691.	2.1	26
28	Shifting the equilibrium of a biocatalytic cascade synthesis to enantiopure epoxides using anion exchangers. Tetrahedron: Asymmetry, 2009, 20, 483-488.	1.8	24
29	Regio―and Stereoselective Biocatalytic Monoamination of a Triketone Enables Asymmetric Synthesis of Both Enantiomers of the Pyrrolizidine Alkaloid Xenovenine Employing Transaminases. Advanced Synthesis and Catalysis, 2016, 358, 444-451.	2.1	23
30	The role of biocatalysis in the asymmetric synthesis of alkaloids – an update. RSC Advances, 2021, 11, 28223-28270.	1.7	20
31	Enantioselective Oxidative Aerobic Dealkylation of <i>N</i> ‣thyl Benzylisoquinolines by Employing the Berberine Bridge Enzyme. Angewandte Chemie - International Edition, 2015, 54, 15051-15054.	7.2	19
32	Asymmetric Biocatalytic Synthesis of 1â€Aryltetrahydroâ€Î²â€carbolines Enabled by "Substrate Walking― Chemistry - A European Journal, 2020, 26, 16281-16285.	1.7	18
33	Regioselective Biocatalytic Transformations Employing Transaminases and Tyrosine Phenol Lyases. Topics in Catalysis, 2019, 62, 1208-1217.	1.3	16
34	Asymmetric Synthesis of Dihydropinidine Enabled by Concurrent Multienzyme Catalysis and a Biocatalytic Alternative to Krapcho Dealkoxycarbonylation. ACS Catalysis, 2020, 10, 1607-1620.	5.5	15
35	Enantioselective Reduction of Ethyl 3â€Oxoâ€5â€phenylpentanoate with Wholeâ€Cell Biocatalysts. European Journal of Organic Chemistry, 2016, 2016, 1007-1011.	1.2	12
36	Artificial Biocatalytic Linear Cascades to Access Hydroxy Acids, Lactones, and α- and β-Amino Acids. Catalysts, 2018, 8, 205.	1.6	11

#	Article	IF	CITATIONS
37	A novel Porphyromonas gingivalis enzyme: An atypical dipeptidyl peptidase III with an ARM repeat domain. PLoS ONE, 2017, 12, e0188915.	1.1	8
38	Controlling stereoselectivity by enzymatic and chemical means to access enantiomerically pure (1S,3R)-1-benzyl-2,3-dimethyl-1,2,3,4-tetrahydroisoquinoline derivatives. Tetrahedron: Asymmetry, 2013, 24, 744-749.	1.8	6
39	Characterization of the monolignol oxidoreductase AtBBE-like protein 15 L182V for biocatalytic applications. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S6-S14.	1.8	6
40	A convenient stereoselective synthesis of 5-hydroxy-3-oxoesters and 3-hydroxy-5-oxoesters. Tetrahedron: Asymmetry, 2017, 28, 797-802.	1.8	5
41	Regioselective Biocatalytic C4â€Prenylation of Unprotected Tryptophan Derivatives. ChemBioChem, 0, , .	1.3	5
42	Front Cover Picture: Regio―and Stereoselective Biocatalytic Monoamination of a Triketone Enables Asymmetric Synthesis of Both Enantiomers of the Pyrrolizidine Alkaloid Xenovenine Employing Transaminases (Adv. Synth. Catal. 3/2016). Advanced Synthesis and Catalysis, 2016, 358, 333-333.	2.1	1
43	Cover Picture: Biocatalytic Enantioselective Oxidative Cĩ£¿C Coupling by Aerobic Cĩ£¿H Activation (Angew. Chem. Int. Ed. 5/2011). Angewandte Chemie - International Edition, 2011, 50, 967-967.	7.2	0
44	Artificial enzyme cascade to the polymer building block ω-amino caproic acid. New Biotechnology, 2014, 31, S75.	2.4	0
45	Chapter 14. Artificial Biocatalytic Cascades to Alcohols and Amines. RSC Catalysis Series, 2018, , 387-438.	0.1	0