Marjolein Kikkert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5162232/publications.pdf

Version: 2024-02-01

40 papers

5,223 citations

172457 29 h-index 39 g-index

48 all docs 48 docs citations

48 times ranked

8929 citing authors

#	Article	IF	Citations
1	Humoral response to SARS-CoV-2 infection among liver transplant recipients. Gut, 2022, 71, 746-756.	12.1	11
2	Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nature Immunology, 2022, 23, 23-32.	14.5	74
3	A third vaccination with a single TÂcell epitope confers protection in a murine model of SARS-CoV-2 infection. Nature Communications, 2022, 13, .	12.8	29
4	Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity. Nature Communications, 2021, 12, 324.	12.8	79
5	Proteomics approaches for the identification of protease substrates during virus infection. Advances in Virus Research, 2021, 109, 135-161.	2.1	5
6	Ad26.COV2.S protects Syrian hamsters against G614 spike variant SARS-CoV-2 and does not enhance respiratory disease. Npj Vaccines, 2021, 6, 39.	6.0	38
7	Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP. Journal of Experimental Medicine, 2021, 218, .	8.5	55
8	Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. MBio, 2021, 12, e0181321.	4.1	28
9	A Yellow Fever 17D Virus Replicon-Based Vaccine Platform for Emerging Coronaviruses. Vaccines, 2021, 9, 1492.	4.4	2
10	Innate Immune Evasion by Human Respiratory RNA Viruses. Journal of Innate Immunity, 2020, 12, 4-20.	3.8	283
11	Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. Npj Vaccines, 2020, 5, 91.	6.0	286
12	Immunometabolism pathways as the basis for innovative anti-viral strategies (INITIATE): A Marie Sklodowska-Curie innovative training network. Virus Research, 2020, 287, 198094.	2.2	2
13	SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. Journal of General Virology, 2020, 101, 925-940.	2.9	465
14	Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses, 2019, 11, 961.	3.3	185
15	Profiling DUBs and Ubl-specific proteases with activity-based probes. Methods in Enzymology, 2019, 618, 357-387.	1.0	10
16	The Role of Atypical Ubiquitin Chains in the Regulation of the Antiviral Innate Immune Response. Frontiers in Cell and Developmental Biology, 2019, 7, 392.	3.7	44
17	Structure and Function of Viral Deubiquitinating Enzymes. Journal of Molecular Biology, 2017, 429, 3441-3470.	4.2	66
18	Host Factors in Coronavirus Replication. Current Topics in Microbiology and Immunology, 2017, 419, 1-42.	1.1	379

#	Article	IF	CITATIONS
19	Interaction of the innate immune system with positive-strand RNA virus replication organelles. Cytokine and Growth Factor Reviews, 2017, 37, 17-27.	7.2	55
20	Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication. MBio, 2017, 8, .	4.1	176
21	Potent and selective inhibition of pathogenic viruses by engineered ubiquitin variants. PLoS Pathogens, 2017, 13, e1006372.	4.7	48
22	Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses. PLoS Pathogens, 2016, 12, e1005982.	4.7	161
23	Antiviral Innate Immune Response Interferes with the Formation of Replication-Associated Membrane Structures Induced by a Positive-Strand RNA Virus. MBio, $2016, 7, .$	4.1	23
24	Biogenesis and architecture of arterivirus replication organelles. Virus Research, 2016, 220, 70-90.	2.2	65
25	A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins. Journal of Virology, 2015, 89, 8318-8333.	3.4	68
26	In vivo assessment of equine arteritis virus vaccine improvement by disabling the deubiquitinase activity of papain-like protease 2. Veterinary Microbiology, 2015, 178, 132-137.	1.9	10
27	Viral OTU Deubiquitinases: A Structural and Functional Comparison. PLoS Pathogens, 2014, 10, e1003894.	4.7	33
28	Crystal Structure of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Papain-like Protease Bound to Ubiquitin Facilitates Targeted Disruption of Deubiquitinating Activity to Demonstrate Its Role in Innate Immune Suppression. Journal of Biological Chemistry, 2014, 289, 34667-34682.	3.4	155
29	Arterivirus molecular biology and pathogenesis. Journal of General Virology, 2013, 94, 2141-2163.	2.9	344
30	Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E838-47.	7.1	108
31	Arterivirus nsp2 Cysteine Proteinase. , 2013, , 2210-2215.		1
32	Arterivirus and Nairovirus Ovarian Tumor Domain-Containing Deubiquitinases Target Activated RIG-I To Control Innate Immune Signaling. Journal of Virology, 2012, 86, 773-785.	3.4	108
33	Linear Ubiquitination of NEMO Negatively Regulates the Interferon Antiviral Response through Disruption of the MAVS-TRAF3 Complex. Cell Host and Microbe, 2012, 12, 211-222.	11.0	101
34	Regulation of the innate immune system by ubiquitin and ubiquitin-like modifiers. Cytokine and Growth Factor Reviews, 2012, 23, 273-282.	7.2	29
35	Papain-Like Protease 1 from Transmissible Gastroenteritis Virus: Crystal Structure and Enzymatic Activity toward Viral and Cellular Substrates. Journal of Virology, 2010, 84, 10063-10073.	3.4	49
36	Integrity of the Early Secretory Pathway Promotes, but Is Not Required for, Severe Acute Respiratory Syndrome Coronavirus RNA Synthesis and Virus-Induced Remodeling of Endoplasmic Reticulum Membranes. Journal of Virology, 2010, 84, 833-846.	3.4	51

#	Article	IF	CITATIONS
37	SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum. PLoS Biology, 2008, 6, e226.	5.6	862
38	Ovarian Tumor Domain-Containing Viral Proteases Evade Ubiquitin- and ISG15-Dependent Innate Immune Responses. Cell Host and Microbe, 2007, 2, 404-416.	11.0	304
39	Human HRD1 Is an E3 Ubiquitin Ligase Involved in Degradation of Proteins from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2004, 279, 3525-3534.	3.4	318
40	Ubiquitination is essential for human cytomegalovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochemical Journal, 2001, 358, 369-377.	3.7	78