
MarÃ-a José Negro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5161919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation and Identification of Key Economic Bottlenecks for Cost-Effective Microbial Oil Production from Fruit and Vegetable Residues. Fermentation, 2022, 8, 334.	3.0	3
2	Sequential bioethanol and methane production from municipal solid waste: An integrated biorefinery strategy towards cost-effectiveness. Chemical Engineering Research and Design, 2021, 146, 424-431.	5.6	30
3	Valorization of Greenhouse Horticulture Waste from a Biorefinery Perspective. Foods, 2021, 10, 814.	4.3	10
4	Production of xylooligosaccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion. Bioresource Technology, 2021, 342, 125953.	9.6	23
5	Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renewable Energy, 2020, 145, 1235-1245.	8.9	73
6	Xylooligosaccharides from steam-exploded barley straw: Structural features and assessment of bifidogenic properties. Food and Bioproducts Processing, 2020, 124, 131-142.	3.6	27
7	Sugars Production from Municipal Forestry and Greening Wastes Pretreated by an Integrated Steam Explosion-Based Process. Energies, 2020, 13, 4432.	3.1	15
8	Fermentation strategies for the efficient use of olive tree pruning biomass from a flexible biorefinery approach. Fuel, 2020, 277, 118171.	6.4	33
9	Overview of bio-based industries. , 2020, , 1-40.		6
10	Biorefineries for the valorization of food processing waste. , 2020, , 155-190.		6
11	Pretreatment Technologies for Lignocellulosic Biomass Deconstruction Within a Biorefinery Perspective. , 2019, , 379-399.		16
12	Determination of the Lignocellulosic Components of Olive Tree Pruning Biomass by Near Infrared Spectroscopy. Energies, 2019, 12, 2497.	3.1	16
13	Second-Generation Bioethanol Production Combining Simultaneous Fermentation and Saccharification of IL-Pretreated Barley Straw. ACS Sustainable Chemistry and Engineering, 2018, 6, 7086-7095.	6.7	41
14	Integral process assessment of sugarcane agricultural crop residues conversion to ethanol. Bioresource Technology, 2018, 260, 241-247.	9.6	36
15	Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw. Holzforschung, 2018, 73, 35-44.	1.9	18
16	Optimized use of hemicellulose within a biorefinery for processing high value-added xylooligosaccharides. Industrial Crops and Products, 2017, 99, 41-48.	5.2	79
17	Oliveâ€derived biomass as a source of energy and chemicals. Biofuels, Bioproducts and Biorefining, 2017, 11, 1077-1094.	3.7	67
18	Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. International Journal of Biological Macromolecules, 2017, 105, 238-251.	7.5	46

#	Article	IF	CITATIONS
19	The biorefinery concept for the industrial valorization of residues from olive oil industry. , 2017, , 57-78.		17
20	A Sequential Steam Explosion and Reactive Extrusion Pretreatment for Lignocellulosic Biomass Conversion within a Fermentation-Based Biorefinery Perspective. Fermentation, 2017, 3, 15.	3.0	48
21	Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context. Spanish Journal of Agricultural Research, 2017, 15, e0206.	0.6	65
22	Steam Explosion for Wheat Straw Pretreatment for Sugars Production. Bioethanol, 2016, 2, .	1.2	65
23	Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR. International Journal of Polymer Science, 2015, 2015, 1-11.	2.7	58
24	Alkaline twin-screw extrusion fractionation of olive-tree pruning biomass. Industrial Crops and Products, 2015, 74, 336-341.	5.2	31
25	High Solids Loading Pretreatment of Olive Tree Pruning with Dilute Phosphoric Acid for Bioethanol Production by <i>Escherichia coli</i> . Energy & Fuels, 2015, 29, 1735-1742.	5.1	46
26	Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric acid as catalyst. Bioresource Technology, 2014, 153, 101-107.	9.6	68
27	Biorefinery based on olive biomass. State of the art and future trends. Bioresource Technology, 2014, 159, 421-432.	9.6	180
28	Sugar production from barley straw biomass pretreated by combined alkali and enzymatic extrusion. Bioresource Technology, 2014, 158, 262-268.	9.6	47
29	Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria. Microbiological Research, 2014, 169, 213-220.	5.3	34
30	Study of process configuration and catalyst concentration in integrated alkaline extrusion of barley straw for bioethanol production. Fuel, 2014, 134, 448-454.	6.4	30
31	Optimization of integrated alkaline–extrusion pretreatment of barley straw for sugar production by enzymatic hydrolysis. Process Biochemistry, 2013, 48, 775-781.	3.7	49
32	Progress on Enzymatic Saccharification Technologies for Biofuels Production. , 2013, , 145-169.		11
33	Enzymatic hydrolysis from carbohydrates of barley straw pretreated by ionic liquids. Journal of Chemical Technology and Biotechnology, 2013, 88, 937-941.	3.2	20
34	Effect of nutrient addition on preinoculum growth of S. cerevisiae for application in SSF processes. Biomass and Bioenergy, 2012, 45, 168-174.	5.7	18
35	Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Conversion and Biorefinery, 2012, 2, 123-132.	4.6	28

Pretreatment Technologies for Lignocellulose-to-Bioethanol Conversion., 2011, , 149-176.

61

MarÃa José Negro

#	Article	IF	CITATIONS
37	Effect of water extraction on sugars recovery from steam exploded olive tree pruning. Bioresource Technology, 2011, 102, 6611-6616.	9.6	77
38	Different process configurations for bioethanol production from pretreated olive pruning biomass. Journal of Chemical Technology and Biotechnology, 2011, 86, 881-887.	3.2	74
39	Strategies of xylanase supplementation for an efficient saccharification and cofermentation process from pretreated wheat straw. Biotechnology Progress, 2011, 27, 944-950.	2.6	21
40	Effect of endoxylanase and α-l-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresource Technology, 2011, 102, 4552-4558.	9.6	112
41	Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel, 2011, 90, 1624-1630.	6.4	88
42	Ethanol Production from the Organic Fraction Obtained After Thermal Pretreatment of Municipal Solid Waste. Applied Biochemistry and Biotechnology, 2010, 161, 423-431.	2.9	55
43	Application of a microassay method to study enzymatic hydrolysis of pretreated wheat straw. Journal of Chemical Technology and Biotechnology, 2010, 85, 1291-1297.	3.2	14
44	Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 2010, 101, 4851-4861.	9.6	3,203
45	Effect of different cellulase dosages on cell viability and ethanol production by Kluyveromyces marxianus in SSF processes. Bioresource Technology, 2009, 100, 890-895.	9.6	56
46	Dilute sulfuric acid pretreatment of cardoon for ethanol production. Biochemical Engineering Journal, 2008, 42, 84-91.	3.6	77
47	Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel, 2008, 87, 692-700.	6.4	203
48	Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel, 2008, 87, 3640-3647.	6.4	236
49	Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochemistry, 2007, 42, 1003-1009.	3.7	179
50	Fractionation of Cynara cardunculus (cardoon) biomass by dilute-acid pretreatment. Applied Biochemistry and Biotechnology, 2007, 137-140, 239-252.	2.9	14
51	Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Applied Biochemistry and Biotechnology, 2007, 137-140, 353-365.	2.9	54
52	Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 2006, 41, 423-429.	3.7	243
53	Effect of Inhibitors Released During Steam-Explosion Pretreatment of Barley Straw on Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 2006, 129, 278-288.	2.9	142
54	Ethanol Production From Steam-Explosion Pretreated Wheat Straw. Applied Biochemistry and Biotechnology, 2006, 130, 496-508.	2.9	260

MarÃa José Negro

#	Article	IF	CITATIONS
55	Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochemistry, 2006, 41, 1223-1228.	3.7	56
56	Effect of Binary Combinations of Selected Toxic Compounds on Growth and Fermentation of Kluyveromyces marxianus. Biotechnology Progress, 2004, 20, 715-720.	2.6	49
57	Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 2004, 39, 1843-1848.	3.7	434
58	Effect of Lignocellulosic Degradation Compounds from Steam Explosion Pretreatment on Ethanol Fermentation by Thermotolerant Yeast Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2003, 105, 141-154.	2.9	118
59	Hydrothermal Pretreatment Conditions to Enhance Ethanol Production from Poplar Biomass. Applied Biochemistry and Biotechnology, 2003, 105, 87-100.	2.9	152
60	Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass and Bioenergy, 2003, 25, 301-308.	5.7	150
61	Hydrothermal Pretreatment Conditions to Enhance Ethanol Production from Poplar Biomass. , 2003, , 87-100.		34
62	Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochemistry, 2002, 38, 187-192.	3.7	138
63	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 559-561.	3.6	67
64	Ethanol Production from Olive Oil Extraction Residue Pretreated with Hot Water. Applied Biochemistry and Biotechnology, 2002, 98-100, 717-732.	2.9	43
65	Simultaneous saccharification and fermentation process for converting the cellulosic fraction of olive oil extraction residue into ethanol Grasas Y Aceites, 2002, 53, .	0.9	4
66	SE—Structure and Environment. Biosystems Engineering, 2001, 79, 317-329.	0.4	76
67	Composting of sweet sorghum bagasse with other wastes. Bioresource Technology, 1999, 67, 89-92.	9.6	50
68	Laboratory Composting Assays of the Solid Residue Resulting from the Flocculation of Oil Mill Wastewater With Different Lignocellulosic Residues. Compost Science and Utilization, 1996, 4, 62-71.	1.2	8
69	Enzymatic hydrolysis of lignocellulosic biomass fromOnopordum nervosum. Biotechnology and Bioengineering, 1988, 32, 341-344.	3.3	10